mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
5.4 KiB
135 lines
5.4 KiB
import argparse |
|
import logging |
|
import os |
|
import time |
|
|
|
import torch |
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig |
|
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear |
|
from torch import distributed as dist |
|
from torch.profiler import ProfilerActivity, profile, record_function |
|
from transformers import AutoTokenizer, LlamaForCausalLM, LlamaTokenizer, TextGenerationPipeline |
|
|
|
import colossalai |
|
from colossalai.gptq import CaiQuantLinear |
|
from colossalai.gptq.gptq_tp import replace_autogptq_linear |
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine |
|
from colossalai.logging import disable_existing_loggers |
|
from colossalai.shardformer import ShardConfig |
|
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn |
|
|
|
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' |
|
|
|
|
|
def init_to_get_rotary(self, base=10000): |
|
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads |
|
if not hasattr(self.config, "rope_scaling"): |
|
rope_scaling_factor = 1.0 |
|
else: |
|
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0 |
|
if hasattr(self.config, "max_sequence_length"): |
|
max_seq_len = self.config.max_sequence_length |
|
elif hasattr(self.config, "max_position_embeddings"): |
|
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor |
|
else: |
|
max_seq_len = 2048 * rope_scaling_factor |
|
base = float(base) |
|
inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) / |
|
self.config.head_dim_)) |
|
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor |
|
freqs = torch.outer(t, inv_freq) |
|
|
|
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda() |
|
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda() |
|
return |
|
|
|
|
|
def print_perf_stats(latency_set, config, bs, warmup=3): |
|
# trim warmup queries |
|
latency_set = list(latency_set) |
|
latency_set = latency_set[warmup:] |
|
count = len(latency_set) |
|
|
|
if count > 0: |
|
latency_set.sort() |
|
avg = sum(latency_set) / count |
|
num_layers = getattr(config, "num_layers", config.num_hidden_layers) |
|
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12 |
|
num_bytes = 2 |
|
|
|
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000)) |
|
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9)) |
|
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12)) |
|
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs)) |
|
|
|
|
|
def run_llama_test(args): |
|
pretrained_model_dir = args.path |
|
quantized_model_dir = args.quantized_path |
|
max_batch_size = args.batch_size |
|
max_input_len = args.input_len |
|
max_output_len = args.output_len |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
|
|
# load quantized model to the first GPU |
|
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, |
|
device=torch.cuda.current_device(), |
|
inject_fused_attention=False) |
|
|
|
init_to_get_rotary(model.model.model, base=10000) |
|
|
|
model_config = model.config |
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, |
|
inference_only=True, |
|
inference_gptq=True) |
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len) |
|
|
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False) |
|
|
|
input_tokens = { |
|
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'), |
|
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda') |
|
} |
|
|
|
iters = 10 |
|
times = [] |
|
|
|
for i in range(iters): |
|
torch.cuda.synchronize() |
|
start = time.time() |
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs) |
|
torch.cuda.synchronize() |
|
end = time.time() |
|
out_len = outputs.shape[1] |
|
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s") |
|
times.append((end - start) / (out_len - max_input_len)) |
|
|
|
print_perf_stats(times, model_config, max_batch_size) |
|
|
|
|
|
def check_llama(rank, world_size, port, args): |
|
disable_existing_loggers() |
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') |
|
run_llama_test(args) |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
@clear_cache_before_run() |
|
def test_llama(args): |
|
spawn(check_llama, args.tp_size, args=args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-p', '--path', type=str, help='Model path', required=True) |
|
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True) |
|
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size') |
|
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size') |
|
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length') |
|
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length') |
|
|
|
args = parser.parse_args() |
|
|
|
test_llama(args)
|
|
|