Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

136 lines
5.4 KiB

import argparse
import logging
import os
import time
import torch
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear
from torch import distributed as dist
from torch.profiler import ProfilerActivity, profile, record_function
from transformers import AutoTokenizer, LlamaForCausalLM, LlamaTokenizer, TextGenerationPipeline
import colossalai
from colossalai.gptq import CaiQuantLinear
from colossalai.gptq.gptq_tp import replace_autogptq_linear
from colossalai.inference.tensor_parallel.engine import TPInferEngine
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
def init_to_get_rotary(self, base=10000):
self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads
if not hasattr(self.config, "rope_scaling"):
rope_scaling_factor = 1.0
else:
rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0
if hasattr(self.config, "max_sequence_length"):
max_seq_len = self.config.max_sequence_length
elif hasattr(self.config, "max_position_embeddings"):
max_seq_len = self.config.max_position_embeddings * rope_scaling_factor
else:
max_seq_len = 2048 * rope_scaling_factor
base = float(base)
inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) /
self.config.head_dim_))
t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor
freqs = torch.outer(t, inv_freq)
self._cos_cached = torch.cos(freqs).to(torch.float16).cuda()
self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()
return
def print_perf_stats(latency_set, config, bs, warmup=3):
# trim warmup queries
latency_set = list(latency_set)
latency_set = latency_set[warmup:]
count = len(latency_set)
if count > 0:
latency_set.sort()
avg = sum(latency_set) / count
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
num_bytes = 2
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
def run_llama_test(args):
pretrained_model_dir = args.path
quantized_model_dir = args.quantized_path
max_batch_size = args.batch_size
max_input_len = args.input_len
max_output_len = args.output_len
tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir,
device=torch.cuda.current_device(),
inject_fused_attention=False)
init_to_get_rotary(model.model.model, base=10000)
model_config = model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False,
inference_only=True,
inference_gptq=True)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
}
iters = 10
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
torch.cuda.synchronize()
end = time.time()
out_len = outputs.shape[1]
print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s")
times.append((end - start) / (out_len - max_input_len))
print_perf_stats(times, model_config, max_batch_size)
def check_llama(rank, world_size, port, args):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_llama_test(args)
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama(args):
spawn(check_llama, args.tp_size, args=args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True)
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
args = parser.parse_args()
test_llama(args)