import argparse import logging import os import time import torch from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from auto_gptq.nn_modules.qlinear import GeneralQuantLinear from torch import distributed as dist from torch.profiler import ProfilerActivity, profile, record_function from transformers import AutoTokenizer, LlamaForCausalLM, LlamaTokenizer, TextGenerationPipeline import colossalai from colossalai.gptq import CaiQuantLinear from colossalai.gptq.gptq_tp import replace_autogptq_linear from colossalai.inference.tensor_parallel.engine import TPInferEngine from colossalai.logging import disable_existing_loggers from colossalai.shardformer import ShardConfig from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' def init_to_get_rotary(self, base=10000): self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads if not hasattr(self.config, "rope_scaling"): rope_scaling_factor = 1.0 else: rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0 if hasattr(self.config, "max_sequence_length"): max_seq_len = self.config.max_sequence_length elif hasattr(self.config, "max_position_embeddings"): max_seq_len = self.config.max_position_embeddings * rope_scaling_factor else: max_seq_len = 2048 * rope_scaling_factor base = float(base) inv_freq = 1.0 / (base**(torch.arange(0, self.config.head_dim_, 2, device="cpu", dtype=torch.float32) / self.config.head_dim_)) t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor freqs = torch.outer(t, inv_freq) self._cos_cached = torch.cos(freqs).to(torch.float16).cuda() self._sin_cached = torch.sin(freqs).to(torch.float16).cuda() return def print_perf_stats(latency_set, config, bs, warmup=3): # trim warmup queries latency_set = list(latency_set) latency_set = latency_set[warmup:] count = len(latency_set) if count > 0: latency_set.sort() avg = sum(latency_set) / count num_layers = getattr(config, "num_layers", config.num_hidden_layers) num_parameters = num_layers * config.hidden_size * config.hidden_size * 12 num_bytes = 2 print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000)) print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9)) print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12)) print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs)) def run_llama_test(args): pretrained_model_dir = args.path quantized_model_dir = args.quantized_path max_batch_size = args.batch_size max_input_len = args.input_len max_output_len = args.output_len tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) tokenizer.pad_token_id = tokenizer.eos_token_id # load quantized model to the first GPU model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device=torch.cuda.current_device(), inject_fused_attention=False) init_to_get_rotary(model.model.model, base=10000) model_config = model.config shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True, inference_gptq=True) infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len) generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False) input_tokens = { "input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'), "attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda') } iters = 10 times = [] for i in range(iters): torch.cuda.synchronize() start = time.time() outputs = infer_engine.generate(input_tokens, **generate_kwargs) torch.cuda.synchronize() end = time.time() out_len = outputs.shape[1] print(f" iter {i}: out len {str(out_len)}, generation time {str(end - start)} s") times.append((end - start) / (out_len - max_input_len)) print_perf_stats(times, model_config, max_batch_size) def check_llama(rank, world_size, port, args): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_llama_test(args) @rerun_if_address_is_in_use() @clear_cache_before_run() def test_llama(args): spawn(check_llama, args.tp_size, args=args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-p', '--path', type=str, help='Model path', required=True) parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True) parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size') parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size') parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length') parser.add_argument('--output_len', type=int, default=128, help='Maximum output length') args = parser.parse_args() test_llama(args)