ColossalAI/colossalai/inference/pipeline/policy/gpt2_ppinfer.py

72 lines
3.3 KiB
Python

from functools import partial
from typing import Callable, Dict, List
from torch import Tensor, nn
import colossalai.shardformer.layer as col_nn
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
from colossalai.shardformer.policies.gpt2 import GPT2Policy
from ..modeling.gpt2 import GPT2PipelineForwards
class GPT2LMHeadModelPipelinePolicy(GPT2Policy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
module_policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
addon_module = {
GPT2LMHeadModel:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True})
])
}
module_policy.update(addon_module)
if self.pipeline_stage_manager is not None:
self.set_pipeline_forward(model_cls=GPT2LMHeadModel,
new_forward=GPT2PipelineForwards.gpt2_lmhead_model_forward,
policy=module_policy)
return module_policy
def get_held_layers(self) -> List[nn.Module]:
held_layers = super().get_held_layers()
# make the tie weight lm_head and embedding in the same device to save memory
# if self.pipeline_stage_manager.is_first_stage():
if self.pipeline_stage_manager.is_first_stage():
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
'''The weights of wte and lm_head are shared.'''
module = self.model
stage_manager = self.pipeline_stage_manager
if stage_manager is not None:
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
first_stage, last_stage = 0, stage_manager.num_stages - 1
return [{first_stage: module.transformer.wte.weight, last_stage: module.lm_head.weight}]
return []
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if not self.pipeline_stage_manager:
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == 'GPT2Model':
module = self.model
else:
module = self.model.transformer
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)