from functools import partial from typing import Callable, Dict, List from torch import Tensor, nn import colossalai.shardformer.layer as col_nn from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription from colossalai.shardformer.policies.gpt2 import GPT2Policy from ..modeling.gpt2 import GPT2PipelineForwards class GPT2LMHeadModelPipelinePolicy(GPT2Policy): def __init__(self) -> None: super().__init__() def module_policy(self): from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel module_policy = super().module_policy() if self.shard_config.enable_tensor_parallelism: addon_module = { GPT2LMHeadModel: ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}) ]) } module_policy.update(addon_module) if self.pipeline_stage_manager is not None: self.set_pipeline_forward(model_cls=GPT2LMHeadModel, new_forward=GPT2PipelineForwards.gpt2_lmhead_model_forward, policy=module_policy) return module_policy def get_held_layers(self) -> List[nn.Module]: held_layers = super().get_held_layers() # make the tie weight lm_head and embedding in the same device to save memory # if self.pipeline_stage_manager.is_first_stage(): if self.pipeline_stage_manager.is_first_stage(): held_layers.append(self.model.lm_head) return held_layers def get_shared_params(self) -> List[Dict[int, Tensor]]: '''The weights of wte and lm_head are shared.''' module = self.model stage_manager = self.pipeline_stage_manager if stage_manager is not None: if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight): first_stage, last_stage = 0, stage_manager.num_stages - 1 return [{first_stage: module.transformer.wte.weight, last_stage: module.lm_head.weight}] return [] def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None: """If under pipeline parallel setting, replacing the original forward method of huggingface to customized forward method, and add this changing to policy.""" if not self.pipeline_stage_manager: raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.") stage_manager = self.pipeline_stage_manager if self.model.__class__.__name__ == 'GPT2Model': module = self.model else: module = self.model.transformer layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages) stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage) method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)} self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)