mirror of https://github.com/hpcaitech/ColossalAI
72 lines
3.3 KiB
Python
72 lines
3.3 KiB
Python
![]() |
from functools import partial
|
||
|
from typing import Callable, Dict, List
|
||
|
|
||
|
from torch import Tensor, nn
|
||
|
|
||
|
import colossalai.shardformer.layer as col_nn
|
||
|
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||
|
from colossalai.shardformer.policies.gpt2 import GPT2Policy
|
||
|
|
||
|
from ..modeling.gpt2 import GPT2PipelineForwards
|
||
|
|
||
|
|
||
|
class GPT2LMHeadModelPipelinePolicy(GPT2Policy):
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
def module_policy(self):
|
||
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
||
|
|
||
|
module_policy = super().module_policy()
|
||
|
|
||
|
if self.shard_config.enable_tensor_parallelism:
|
||
|
addon_module = {
|
||
|
GPT2LMHeadModel:
|
||
|
ModulePolicyDescription(sub_module_replacement=[
|
||
|
SubModuleReplacementDescription(
|
||
|
suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True})
|
||
|
])
|
||
|
}
|
||
|
module_policy.update(addon_module)
|
||
|
|
||
|
if self.pipeline_stage_manager is not None:
|
||
|
self.set_pipeline_forward(model_cls=GPT2LMHeadModel,
|
||
|
new_forward=GPT2PipelineForwards.gpt2_lmhead_model_forward,
|
||
|
policy=module_policy)
|
||
|
return module_policy
|
||
|
|
||
|
def get_held_layers(self) -> List[nn.Module]:
|
||
|
held_layers = super().get_held_layers()
|
||
|
# make the tie weight lm_head and embedding in the same device to save memory
|
||
|
# if self.pipeline_stage_manager.is_first_stage():
|
||
|
if self.pipeline_stage_manager.is_first_stage():
|
||
|
held_layers.append(self.model.lm_head)
|
||
|
return held_layers
|
||
|
|
||
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||
|
'''The weights of wte and lm_head are shared.'''
|
||
|
module = self.model
|
||
|
stage_manager = self.pipeline_stage_manager
|
||
|
if stage_manager is not None:
|
||
|
if stage_manager.num_stages > 1 and id(module.transformer.wte.weight) == id(module.lm_head.weight):
|
||
|
first_stage, last_stage = 0, stage_manager.num_stages - 1
|
||
|
return [{first_stage: module.transformer.wte.weight, last_stage: module.lm_head.weight}]
|
||
|
return []
|
||
|
|
||
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
||
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
||
|
to customized forward method, and add this changing to policy."""
|
||
|
if not self.pipeline_stage_manager:
|
||
|
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
|
||
|
stage_manager = self.pipeline_stage_manager
|
||
|
if self.model.__class__.__name__ == 'GPT2Model':
|
||
|
module = self.model
|
||
|
else:
|
||
|
module = self.model.transformer
|
||
|
|
||
|
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||
|
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||
|
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
|