[Zerobubble] merge main. (#6142)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* [feat] moehybrid support zerobubble;

* [fix] fix zerobubble pp for shardformer type input;

* [feat] add more test;

* [fix] fix require_grad & deallocate call;

* [fix] updatw bwd b&w input; dict --> list[torch.Tensor]

* [fix] fix bwd w input;

* [fix] fix mem assert;

* [fix] fix input_tensors buffer  append input_obj(dict) --> Tuple (microbatch, input_obj) , and all bwd b related cal logic;

* [fix] use tree_flatten replace dict traverse;

* [fix] rm comments;

* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'

* [fix] fix pipeline util func deallocate --> release_tensor_data; fix bwd_b loss bwd branch;

* [fix] fix detach clone release order;

* [fix] fix ci --> oom in 4096 hidden dim;

* [fix] fix dumb clone;

* [fix] fix detach_output_obj clone;

* [fix] fix stage_indices;

* [fix] fix traverse; traverse dict --> traverse tensor List;

* [fix] fix zerobubble; support shardformer model type;

* [fix] rm comments;

* [fix] fix test_pipeline_utils ci;

* [fix] remove duplicate arg; rm comments;

* [fix] remove chunk 0 stage 0 bwd b; u don't have to cal micrbatch's dx;

* [fix] rm print & comments;

* [plugin] hybrid support zero bubble pipeline (#6060)

* hybrid support zbv

* fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* hybrid support zbv

* fix

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>

* [feat] zerobubble support moehybridplugin;

* [feat] update optimizer bwd; ä¸

* [fix] fix build ci;

* [zerobubble] rebase main (#6075)

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [fp8] add fp8 comm for low level zero

* [test] add zero fp8 test case

* [Feature] llama shardformer fp8 support (#5938)

* add llama shardformer fp8

* Llama Shardformer Parity

* fix typo

* fix all reduce

* fix pytest failure

* fix reduce op and move function to fp8.py

* fix typo

* [FP8] rebase main (#5963)

* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update low_level_optim.py

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>

* [fp8]support all2all fp8 (#5953)

* support all2all fp8

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [fp8] add fp8 linear (#5967)

* [fp8] add fp8 linear

* [test] fix fp8 linear test condition

* [test] fix fp8 linear test condition

* [test] fix fp8 linear test condition

* [fp8] support fp8 amp for hybrid parallel plugin (#5975)

* [fp8] support fp8 amp for hybrid parallel plugin

* [test] add fp8 hook test

* [fp8] fix fp8 linear compatibility

* fix (#5976)

* [Feature]: support FP8 communication in DDP, FSDP, Gemini (#5928)

* support fp8_communication in the Torch DDP grad comm, FSDP grad comm, and FSDP params comm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* implement communication hook for FSDP params all-gather

* added unit test for fp8 operators

* support fp8 communication in GeminiPlugin

* update training scripts to support fsdp and fp8 communication

* fixed some minor bugs observed in unit test

* add all_gather_into_tensor_flat_fp8

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add skip the test if torch < 2.2.0

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add skip the test if torch < 2.2.0

* add skip the test if torch < 2.2.0

* add fp8_comm flag

* rebase latest fp8 operators

* rebase latest fp8 operators

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [test ci]Feature/fp8 comm (#5981)

* fix

* fix

* fix

* [fp8] support gemini plugin (#5978)

* [fp8] refactor hook

* [fp8] support gemini plugin

* [example] add fp8 option for llama benchmark

* [fp8] use torch compile (torch >= 2.3.0) (#5979)

* [fp8] use torch compile (torch >= 2.4.0)

* [fp8] set use_fast_accum in linear

* [chore] formal version check

* [chore] fix sig

* [fp8]Moe support fp8 communication (#5977)

* fix

* support moe fp8

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

fix

fi

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [fp8] support hybrid parallel plugin (#5982)

* support fp8 comm for qwen2 model

* support fp8 comm for qwen2 model

* support fp8 comm for qwen2 model

* fp8

* fix

* bert and bloom

* chatglm and command

* gpt2,gptj,bert, falcon,blip2

* mistral,opy,sam,t5,vit,whisper

* fix

* fix

* fix

* [fp8] refactor fp8 linear with compile (#5993)

* [fp8] refactor fp8 linear with compile

* [fp8] fix linear test

* [fp8] fix linear test

* [fp8] support asynchronous FP8 communication (#5997)

* fix

* fix

* fix

* support async all2all

* support async op for all gather

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [fp8] update torch.compile for linear_fp8 to >= 2.4.0 (#6004)

* [fp8] linear perf enhancement

* [fp8]update reduce-scatter test (#6002)

* fix

* fix

* fix

* fix

* [fp8] add use_fp8 option for MoeHybridParallelPlugin (#6009)

* [fp8] zero support fp8 linear. (#6006)

* fix

* fix

* fix

* zero fp8

* zero fp8

* Update requirements.txt

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix the merge

* fix the merge

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

* [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016)

* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* Support overall loss, update KTO logging

* [Docs] clarify launch port

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Hotfix] README link (#5966)

* update ignore

* update readme

* run style

* update readme

* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Chat] fix readme (#5989)

* fix readme

* fix readme, tokenization fully tested

* fix readme, tokenization fully tested

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix sync condition (#6000)

* [plugin] add cast inputs option for zero (#6003)

* [pre-commit.ci] pre-commit autoupdate (#5995)

updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)

* [Feature] Zigzag Ring attention (#5905)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update compatibility (#6008)

* [misc] update compatibility

* [misc] update requirements

* [devops] disable requirements cache

* [test] fix torch ddp test

* [test] fix rerun on address in use

* [test] fix lazy init

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix the merge

* overlap kv comm with output rescale (#6017)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix the merge

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix

* fix

* fix the merge

* fix

* [misc] Use dist logger in plugins (#6011)

* use dist logger in plugins

* remove trash

* print on rank 0

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix

* fix

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update train_dpo.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update low_level_zero_plugin.py

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [CI] Remove triton version for compatibility bug; update req torch >=2.2 (#6018)

* remove triton version

* remove torch 2.2

* remove torch 2.1

* debug

* remove 2.1 build tests

* require torch >=2.2

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [plugin] hotfix zero plugin (#6036)

* [plugin] hotfix zero plugin

* [plugin] hotfix zero plugin

* [Colossal-LLaMA] Refactor latest APIs (#6030)

* refactor latest code

* update api

* add dummy dataset

* update Readme

* add setup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update files

* add PP support

* update arguments

* update argument

* reorg folder

* update version

* remove IB infor

* update utils

* update readme

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update save for zero

* update save

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add apex

* update

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* add fused norm (#6038)

* [FP8] unsqueeze scale to make it compatible with torch.compile (#6040)

* [colossalai/checkpoint_io/...] fix bug in load_state_dict_into_model; format error msg (#6020)

* fix bug in load_state_dict_into_model; format error msg

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update utils.py

to support checking missing_keys

* Update general_checkpoint_io.py

fix bug in missing_keys error message

* retrigger tests

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hotfix] Remove deprecated install (#6042)

* remove deprecated install

* remove unused folder

* [fp8] optimize all-gather (#6043)

* [fp8] optimize all-gather

* [fp8] fix all gather fp8 ring

* [fp8] enable compile

* [fp8] fix all gather fp8 ring

* [fp8] fix linear hook (#6046)

* [fp8] disable all_to_all_fp8 in intranode  (#6045)

* enhance all_to_all_fp8 with internode comm control

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* disable some fp8 ops due to performance issue

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [release] update version (#6041)

* [release] update version

* [devops] update comp test

* [devops] update comp test debug

* [devops] debug comp test

* [devops] debug comp test

* [devops] debug comp test

* [devops] debug comp test

* [devops] debug comp test

* [Feature] Split cross-entropy computation in SP (#5959)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

* adapt chatglm, command-R, qwen

* debug

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

* add comments

* q1 index only once

* remove events to simplify stream sync

* simplify forward/backward logic

* 2d ring forward passed

* 2d ring backward passed

* fixes

* fix ring attn loss

* 2D ring backward + llama passed

* merge

* update logger

* fix typo

* rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* remove typos

* fixes

* support GPT

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [hotfix] moe hybrid parallelism benchmark & follow-up fix (#6048)

* [example] pass use_fp8_comm flag to all plugins

* [example] add mixtral benchmark

* [moe] refine assertion and check

* [moe] fix mixtral & add more tests

* [moe] consider checking dp * sp group and moe_dp_group

* [mixtral] remove gate tp & add more tests

* [deepseek] fix tp & sp for deepseek

* [mixtral] minor fix

* [deepseek] add deepseek benchmark

* [fp8] hotfix backward hook (#6053)

* [fp8] hotfix backward hook

* [fp8] hotfix pipeline loss accumulation

* [doc] update sp doc (#6055)

* update sp doc

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix the sp

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the attn

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* [fp8] fix missing fp8_comm flag in mixtral (#6057)

* fix

* fix

* fix

* [fp8] Disable all_gather intranode. Disable Redundant all_gather fp8 (#6059)

* all_gather only internode, fix pytest

* fix cuda arch <89 compile pytest error

* fix pytest failure

* disable all_gather_into_tensor_flat_fp8

* fix fp8 format

* fix pytest

* fix conversations

* fix chunk tuple to list

* [doc] FP8 training and communication document (#6050)

* Add FP8 training and communication document

* add fp8 docstring for plugins

* fix typo

* fix typo

* fix

* fix

* [moe] add parallel strategy for shared_expert && fix test for deepseek (#6063)

* [ColossalEval] support for vllm (#6056)

* support vllm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* modify vllm and update readme

* run pre-commit

* remove dupilicated lines and refine code

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update param name

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refine code

* update readme

* refine code

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [release] update version (#6062)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] fix poc format

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix mem check;

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [feat] moehybrid support zerobubble;

* [fix] fix zerobubble pp for shardformer type input;

* [fix] fix require_grad & deallocate call;

* [fix] fix mem assert;

* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'

* [fix] fix pipeline util func deallocate --> release_tensor_data; fix bwd_b loss bwd branch;

* [fix] fix zerobubble; support shardformer model type;

* [fix] fix test_pipeline_utils ci;

* [plugin] hybrid support zero bubble pipeline (#6060)

* hybrid support zbv

* fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* hybrid support zbv

* fix

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] fix poc format

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [feat] update test; rm comments;

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix mem check;

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix mem assert;

* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'

* [plugin] hybrid support zero bubble pipeline (#6060)

* hybrid support zbv

* fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* hybrid support zbv

* fix

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: HangXu <hangxu0304@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: GuangyaoZhang <xjtu521@qq.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: wangbluo <2538539015@qq.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>

* [fix] fix mixtral policy;

* [fix] fix mixtral policy;

* [feat] support zbv in mixtral benchmark;

* [fix] MixtralForCausalLMPolicy get_held_layer support zbv;

* [feat] update MixtralPipelineForwards --> mixtral_model_forward; support zbv;

* [feat] support MixtralPipelineForwards--> mixtral_for_causal_lm_forward for zbv

* [zero bubble] support zero (#6080)

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [fp8] add fp8 comm for low level zero

* [test] add zero fp8 test case

* [Feature] llama shardformer fp8 support (#5938)

* add llama shardformer fp8

* Llama Shardformer Parity

* fix typo

* fix all reduce

* fix pytest failure

* fix reduce op and move function to fp8.py

* fix typo

* [FP8] rebase main (#5963)

* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update low_level_optim.py

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>

* [fp8]support all2all fp8 (#5953)

* support all2all fp8

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [fp8] add fp8 linear (#5967)

* [fp8] add fp8 linear

* [test] fix fp8 linear test condition

* [test] fix fp8 linear test condition

* [test] fix fp8 linear test condition

* [fp8] support fp8 amp for hybrid parallel plugin (#5975)

* [fp8] support fp8 amp for hybrid parallel plugin

* [test] add fp8 hook test

* [fp8] fix fp8 linear compatibility

* fix (#5976)

* [Feature]: support FP8 communication in DDP, FSDP, Gemini (#5928)

* support fp8_communication in the Torch DDP grad comm, FSDP grad comm, and FSDP params comm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* implement communication hook for FSDP params all-gather

* added unit test for fp8 operators

* support fp8 communication in GeminiPlugin

* update training scripts to support fsdp and fp8 communication

* fixed some minor bugs observed in unit test

* add all_gather_into_tensor_flat_fp8

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add skip the test if torch < 2.2.0

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add skip the test if torch < 2.2.0

* add skip the test if torch < 2.2.0

* add fp8_comm flag

* rebase latest fp8 operators

* rebase latest fp8 operators

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [test ci]Feature/fp8 comm (#5981)

* fix

* fix

* fix

* [fp8] support gemini plugin (#5978)

* [fp8] refactor hook

* [fp8] support gemini plugin

* [example] add fp8 option for llama benchmark

* [fp8] use torch compile (torch >= 2.3.0) (#5979)

* [fp8] use torch compile (torch >= 2.4.0)

* [fp8] set use_fast_accum in linear

* [chore] formal version check

* [chore] fix sig

* [fp8]Moe support fp8 communication (#5977)

* fix

* support moe fp8

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

fix

fi

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [fp8] support hybrid parallel plugin (#5982)

* support fp8 comm for qwen2 model

* support fp8 comm for qwen2 model

* support fp8 comm for qwen2 model

* fp8

* fix

* bert and bloom

* chatglm and command

* gpt2,gptj,bert, falcon,blip2

* mistral,opy,sam,t5,vit,whisper

* fix

* fix

* fix

* [fp8] refactor fp8 linear with compile (#5993)

* [fp8] refactor fp8 linear with compile

* [fp8] fix linear test

* [fp8] fix linear test

* [fp8] support asynchronous FP8 communication (#5997)

* fix

* fix

* fix

* support async all2all

* support async op for all gather

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [fp8] update torch.compile for linear_fp8 to >= 2.4.0 (#6004)

* [fp8] linear perf enhancement

* [fp8]update reduce-scatter test (#6002)

* fix

* fix

* fix

* fix

* [fp8] add use_fp8 option for MoeHybridParallelPlugin (#6009)

* [fp8] zero support fp8 linear. (#6006)

* fix

* fix

* fix

* zero fp8

* zero fp8

* Update requirements.txt

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix the merge

* fix the merge

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

* [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016)

* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* Support overall loss, update KTO logging

* [Docs] clarify launch port

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Hotfix] README link (#5966)

* update ignore

* update readme

* run style

* update readme

* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Chat] fix readme (#5989)

* fix readme

* fix readme, tokenization fully tested

* fix readme, tokenization fully tested

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix sync condition (#6000)

* [plugin] add cast inputs option for zero (#6003)

* [pre-commit.ci] pre-commit autoupdate (#5995)

updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)

* [Feature] Zigzag Ring attention (#5905)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update compatibility (#6008)

* [misc] update compatibility

* [misc] update requirements

* [devops] disable requirements cache

* [test] fix torch ddp test

* [test] fix rerun on address in use

* [test] fix lazy init

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix the merge

* overlap kv comm with output rescale (#6017)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix the merge

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the merge

* fix

* fix

* fix the merge

* fix

* [misc] Use dist logger in plugins (#6011)

* use dist logger in plugins

* remove trash

* print on rank 0

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* fix

* fix

* fix

* fix

* fix the merge

* fix

* fix

* fix

* fix

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update train_dpo.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update low_level_zero_plugin.py

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [CI] Remove triton version for compatibility bug; update req torch >=2.2 (#6018)

* remove triton version

* remove torch 2.2

* remove torch 2.1

* debug

* remove 2.1 build tests

* require torch >=2.2

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [plugin] hotfix zero plugin (#6036)

* [plugin] hotfix zero plugin

* [plugin] hotfix zero plugin

* [Colossal-LLaMA] Refactor latest APIs (#6030)

* refactor latest code

* update api

* add dummy dataset

* update Readme

* add setup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update files

* add PP support

* update arguments

* update argument

* reorg folder

* update version

* remove IB infor

* update utils

* update readme

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update save for zero

* update save

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add apex

* update

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* add fused norm (#6038)

* [FP8] unsqueeze scale to make it compatible with torch.compile (#6040)

* [colossalai/checkpoint_io/...] fix bug in load_state_dict_into_model; format error msg (#6020)

* fix bug in load_state_dict_into_model; format error msg

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update utils.py

to support checking missing_keys

* Update general_checkpoint_io.py

fix bug in missing_keys error message

* retrigger tests

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hotfix] Remove deprecated install (#6042)

* remove deprecated install

* remove unused folder

* [fp8] optimize all-gather (#6043)

* [fp8] optimize all-gather

* [fp8] fix all gather fp8 ring

* [fp8] enable compile

* [fp8] fix all gather fp8 ring

* [fp8] fix linear hook (#6046)

* [fp8] disable all_to_all_fp8 in intranode  (#6045)

* enhance all_to_all_fp8 with internode comm control

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* disable some fp8 ops due to performance issue

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [release] update version (#6041)

* [release] update version

* [devops] update comp test

* [devops] update comp test debug

* [devops] debug comp test

* [devops] debug comp test

* [devops] debug comp test

* [devops] debug comp test

* [devops] debug comp test

* [Feature] Split cross-entropy computation in SP (#5959)

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* update softmax_lse shape by new interface

* change tester name

* remove buffer clone; support packed seq layout

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

* adapt chatglm, command-R, qwen

* debug

* halfway

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* unified cross entropy func for all shardformer models

* remove redundant lines

* add basic ring attn; debug cross entropy

* fwd bwd logic complete

* fwd bwd logic complete; add experimental triton rescale

* precision tests passed

* precision tests passed

* fix typos and remove misc files

* add sp_mode to benchmark; fix varlen interface

* update softmax_lse shape by new interface

* add varlen tests

* fix typo

* all tests passed

* add dkv_group; fix mask

* remove debug statements

* add comments

* q1 index only once

* remove events to simplify stream sync

* simplify forward/backward logic

* 2d ring forward passed

* 2d ring backward passed

* fixes

* fix ring attn loss

* 2D ring backward + llama passed

* merge

* update logger

* fix typo

* rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* remove typos

* fixes

* support GPT

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [hotfix] moe hybrid parallelism benchmark & follow-up fix (#6048)

* [example] pass use_fp8_comm flag to all plugins

* [example] add mixtral benchmark

* [moe] refine assertion and check

* [moe] fix mixtral & add more tests

* [moe] consider checking dp * sp group and moe_dp_group

* [mixtral] remove gate tp & add more tests

* [deepseek] fix tp & sp for deepseek

* [mixtral] minor fix

* [deepseek] add deepseek benchmark

* [fp8] hotfix backward hook (#6053)

* [fp8] hotfix backward hook

* [fp8] hotfix pipeline loss accumulation

* [doc] update sp doc (#6055)

* update sp doc

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix the sp

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix the attn

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* [fp8] fix missing fp8_comm flag in mixtral (#6057)

* fix

* fix

* fix

* [fp8] Disable all_gather intranode. Disable Redundant all_gather fp8 (#6059)

* all_gather only internode, fix pytest

* fix cuda arch <89 compile pytest error

* fix pytest failure

* disable all_gather_into_tensor_flat_fp8

* fix fp8 format

* fix pytest

* fix conversations

* fix chunk tuple to list

* [doc] FP8 training and communication document (#6050)

* Add FP8 training and communication document

* add fp8 docstring for plugins

* fix typo

* fix typo

* fix

* fix

* [moe] add parallel strategy for shared_expert && fix test for deepseek (#6063)

* [ColossalEval] support for vllm (#6056)

* support vllm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* modify vllm and update readme

* run pre-commit

* remove dupilicated lines and refine code

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update param name

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refine code

* update readme

* refine code

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [release] update version (#6062)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] fix poc format

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix mem check;

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [feat] moehybrid support zerobubble;

* [fix] fix zerobubble pp for shardformer type input;

* [fix] fix require_grad & deallocate call;

* [fix] fix mem assert;

* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'

* [fix] fix pipeline util func deallocate --> release_tensor_data; fix bwd_b loss bwd branch;

* [fix] fix zerobubble; support shardformer model type;

* [fix] fix test_pipeline_utils ci;

* [plugin] hybrid support zero bubble pipeline (#6060)

* hybrid support zbv

* fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* hybrid support zbv

* fix

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] fix poc format

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [feat] update test; rm comments;

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix mem check;

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix mem assert;

* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'

* [plugin] hybrid support zero bubble pipeline (#6060)

* hybrid support zbv

* fix

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* [zerobubble]Support ZeroBubble Pipeline (#6034)

* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;

* [feat] add dw test;

* [fix] fix weight not close;

* [update] update text;

* [feat] add test run_fwd_bwd automatic scheduling;

* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;

* [feat] add test for p & p grad;

* [feat] add comments for ZBV func;

* [fix] rm useless assign and comments;

* [fix] fix ci test; add pytest;

* [feat] add run_fwd_bwd_with_microbatch  (replace input) & test; add p&p.grad assert close test & all pass;

* [feat] add apply v_schedule graph; p & p.grad assert err exist;

* [fix] update

* [feat] fix ci; add assert;

* [feat] fix poc format

* [feat] fix func name & ci; add comments;

* [fix] fix poc test; add comments in poc;

* [feat] add optim backward_b_by_grad

* [feat] fix optimizer bwd b & w; support return accum loss & output

* [feat] add fwd_bwd_step, run_fwd_only;

* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;

* [fix] fix communication_map;

* [feat] update test; rm comments;

* [fix] rm zbv in hybridplugin

* [fix] fix optim bwd;

* [fix] fix optim bwd;

* [fix] rm output.data after send fwd;

* [fix] fix bwd step if condition; remove useless comments and format info;

* [fix] fix detach output & release output;

* [fix] rm requir_grad for output;

* [fix] fix requir grad position and detach position and input&output local buffer append position;

* [feat] add memory assertation;

* [fix] fix mem check;

* [fix] mem assertation'

* [fix] fix mem assertation

* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;

* [fix] fix model zoo import;

* [fix] fix redundant detach & clone; add buffer assertation in the end;

* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;

* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;

* [fix] add testcase with microbatch 4;

* hybrid support zbv

* fix

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update zero_bubble_pp.py

* fix

* fix-ci

* fix

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix

* fix

* fix

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* zbv support zero

* fix

* fix

* fix

---------

Co-authored-by: HangXu <hangxu0304@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: GuangyaoZhang <xjtu521@qq.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: wangbluo <2538539015@qq.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>

* [fix] fix llama, mixtral benchmark zbv loss none bug; update mixtral & llama policy and modeling;

* [feat] Linear1D_COL/ROW support zbv WeightGradStore;

* [feat] support use_zbv in llama, mixtral modeling; only replace Linear1D_Col/Row policy;

* [fix] fix test case; moe error in second iter

* [feat]EPMixtralSparseMoeBlock (op in MOE) support zbv;

* [fix] fix bwd b; now bwd w only for Layer replaced by Linear1D_Col/Row; other layer perform a fully bwd;

* [fix] debug zbv llama test;

* [fix] rm use_zbv flag in Shardconfig; rm debug info;

* [fix] add & fix  llama test

* [feat] support meta cache, meta_grad_send, meta_tensor_send; fix runtime too long in Recv Bwd; benchmark for llama + Hybrid(tp+pp);

* [fix\ fix fail case test_shard_llama

* [fix] fix test_shard_llama

* [fix] fix llama modeling policy;

* [fix] fix test_shard_llama ci;

* [fix] fix test zerobubble

* [fix] fix handle name; rm useless comments;

* [fix] fix send recv signature;

* [fix] fix comment in llama & benchmark

* [feat] support no tensor parallel Linear in shardformer; Add test for use weightGradStore and not use WeightGradStore

* [fix] fix linear (no tp) ops func name;

* [feat] support zbv in mixtral benchmark; (#6083)

* [feat] support zbv in mixtral benchmark;

* [fix] MixtralForCausalLMPolicy get_held_layer support zbv;

* [feat] update MixtralPipelineForwards --> mixtral_model_forward; support zbv;

* [feat] support MixtralPipelineForwards--> mixtral_for_causal_lm_forward for zbv

* [fix] fix llama, mixtral benchmark zbv loss none bug; update mixtral & llama policy and modeling;

* [feat] Linear1D_COL/ROW support zbv WeightGradStore;

* [feat] support use_zbv in llama, mixtral modeling; only replace Linear1D_Col/Row policy;

* [fix] fix test case; moe error in second iter

* [feat]EPMixtralSparseMoeBlock (op in MOE) support zbv;

* [fix] fix bwd b; now bwd w only for Layer replaced by Linear1D_Col/Row; other layer perform a fully bwd;

* [fix] debug zbv llama test;

* [fix] rm use_zbv flag in Shardconfig; rm debug info;

* [fix] add & fix  llama test

* [feat] support meta cache, meta_grad_send, meta_tensor_send; fix runtime too long in Recv Bwd; benchmark for llama + Hybrid(tp+pp);

* [fix\ fix fail case test_shard_llama

* [fix] fix test_shard_llama

* [fix] fix llama modeling policy;

* [fix] fix test_shard_llama ci;

* [fix] fix test zerobubble

* [fix] fix handle name; rm useless comments;

* [fix] fix send recv signature;

* [fix] fix comment in llama & benchmark

* [feat] support no tensor parallel Linear in shardformer; Add test for use weightGradStore and not use WeightGradStore

* [fix] fix linear (no tp) ops func name;

* [fix] fix fp8 args in HybridParallel

* [fix] fix hybridparall use_fp8 config

* [fix] fix use_fp8 flag

* [fix] fix model zoo init

* [feat] support no_tp Linear for sharderformer.llama

* [fix] fix zbv llama pp4

* [fix] fix send_tensor_metadata & send_grad_metadata;

* [feat] fix testcase;

* [feat] support mixtral policy with zbv tp_Linear & non_tp_Linear

* [feat] update mixtral policy & bert policy for zerobubble

* [fix] fix p2p error in zbv

* [fix] fix attn

* [fix] fix mixtral modeling & policy; update wait handles; doing benchmarking for llama hybrid;

* [fix] fix zbv wait_handle

* [fix] rm debug info; update llama policy; update wait handle

* [fix] fix test_lora

* [fix] fix test_lora in llama policy

* [fix] fix wait handle in run_fwd_bwd

* [fix] remove debug info;

* [fix] rm unused comments

* [fix] fix fp8 overlap code

* [fix] fix yml file & v_schedule comments

* [fix] rm fwd only meta cache comments;

---------

Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
Co-authored-by: GuangyaoZhang <xjtu521@qq.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: wangbluo <2538539015@qq.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
pull/6147/head
duanjunwen 5 days ago committed by GitHub
parent 184a653704
commit e0c68ab6d3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -43,7 +43,7 @@ class MixedPrecisionMixin(ABC):
dtype: torch.dtype
@abstractmethod
def pre_backward(self, loss: Tensor) -> Tensor:
def pre_backward(self, loss: Tensor, *args, **kwargs) -> Tensor:
"""Called before backward.
Args:

@ -86,13 +86,18 @@ class MixedPrecisionOptimizer(OptimizerWrapper):
group["params"] = master_params
self._current_grad_norm: Optional[float] = None
def backward(self, loss: Tensor, *args, **kwargs):
def backward(self, loss: Tensor, inputs=None, retain_graph=False, **kwargs):
loss = self.mixed_precision.pre_backward(loss)
loss.backward(*args, **kwargs)
loss.backward(inputs=inputs, retain_graph=retain_graph, **kwargs)
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
def backward_by_grad(self, tensor: Tensor, grad: Tensor, inputs: Tensor = None, retain_graph: bool = False):
grad = self.mixed_precision.pre_backward_by_grad(tensor, grad)
tensor.backward(grad)
torch.autograd.backward(
tensors=tensor,
grad_tensors=grad,
inputs=inputs,
retain_graph=retain_graph,
)
def zero_grad(self, *args, **kwargs):
for p in self.working_to_master_map.keys():

@ -46,9 +46,9 @@ class TorchAMPOptimizer(OptimizerWrapper):
growth_interval=growth_interval,
)
def backward(self, loss: Tensor, *args, **kwargs) -> None:
def backward(self, loss: Tensor, inputs=None, retain_graph=False, **kwargs) -> None:
scaled_loss = self.scale_loss(loss)
scaled_loss.backward(*args, **kwargs)
scaled_loss.backward(inputs=inputs, retain_graph=retain_graph, **kwargs)
def step(self, *args, **kwargs) -> Optional[float]:
out = self.scaler.step(self.optim, *args, **kwargs)

@ -28,7 +28,7 @@ from colossalai.interface import AMPModelMixin, ModelWrapper, OptimizerWrapper
from colossalai.interface.optimizer import DistributedOptim
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import DistGaloreAwamW, cast_to_distributed
from colossalai.pipeline.schedule import InterleavedSchedule, OneForwardOneBackwardSchedule
from colossalai.pipeline.schedule import InterleavedSchedule, OneForwardOneBackwardSchedule, ZeroBubbleVPipeScheduler
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.quantization import BnbQuantizationConfig, quantize_model
from colossalai.quantization.fp8_hook import FP8Hook
@ -296,7 +296,7 @@ class HybridParallelNaiveOptimizer(OptimizerWrapper):
self._current_grad_norm: Optional[float] = None
super().__init__(optim)
def backward(self, loss: Tensor, *args, **kwargs):
def backward(self, loss: Tensor, inputs=None, retain_graph=False, **kwargs):
r"""
Backpropagate gradients through the model and optionally synchronize sequence parallelism gradients.
@ -315,7 +315,7 @@ class HybridParallelNaiveOptimizer(OptimizerWrapper):
# Call the superclass backward method to compute gradients.
with self.model._hook_context():
super().backward(loss, *args, **kwargs)
super().backward(loss, inputs=inputs, retain_graph=retain_graph, **kwargs)
if self.model.require_grad_sync:
# If gradient synchronization is required, sync sequence parallelism gradients.
@ -324,7 +324,7 @@ class HybridParallelNaiveOptimizer(OptimizerWrapper):
# If gradient synchronization is is not required, return.
return
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
def backward_by_grad(self, tensor: Tensor, grad: Tensor, inputs: Tensor = None, retain_graph: bool = False):
"""
Backpropagate gradients through the model using a precomputed gradient and optionally synchronize sequence parallelism gradients.
@ -341,7 +341,7 @@ class HybridParallelNaiveOptimizer(OptimizerWrapper):
"""
# Call the superclass backward method to compute gradients.
super().backward_by_grad(tensor, grad)
super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
if self.model.require_grad_sync:
# If gradient synchronization is required, sync sequence parallelism gradients.
@ -525,7 +525,7 @@ class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
max_norm=max_norm,
)
def backward(self, loss: Tensor, *args, **kwargs):
def backward(self, loss: Tensor, inputs=None, retain_graph=False, **kwargs):
r"""
Backpropagate gradients through the model and optionally synchronize sequence parallelism gradients.
@ -543,7 +543,7 @@ class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
"""
# Call the superclass backward method to compute gradients.
with self.model._hook_context():
super().backward(loss, *args, **kwargs)
super().backward(loss, inputs=inputs, retain_graph=retain_graph, **kwargs)
if self.model.require_grad_sync:
# If gradient synchronization is required, sync sequence parallelism gradients.
@ -552,7 +552,7 @@ class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
# If gradient synchronization is is not required, return.
return
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
def backward_by_grad(self, tensor: Tensor, grad: Tensor, inputs: Tensor = None, retain_graph: bool = False):
"""
Backpropagate gradients through the model using a precomputed gradient and optionally synchronize sequence parallelism gradients.
@ -568,7 +568,7 @@ class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
None
"""
# Call the superclass backward method to compute gradients.
super().backward_by_grad(tensor, grad)
super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
if self.model.require_grad_sync:
# If gradient synchronization is required, sync sequence parallelism gradients.
@ -785,7 +785,7 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
else:
return
def backward(self, loss, retain_graph=False):
def backward(self, loss, inputs=None, retain_graph=False):
"""
Backpropagate gradients through the model and optionally synchronize sequence parallelism gradients.
@ -801,7 +801,7 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
None
"""
# Call the superclass backward method to compute gradients.
super().backward(loss, retain_graph)
super().backward(loss, inputs=inputs, retain_graph=retain_graph)
if self.require_grad_sync and self.model.shard_config.enable_sequence_parallelism:
# If gradient synchronization is required, sync sequence parallelism gradients.
@ -810,7 +810,7 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
# If gradient synchronization is is not required, return.
return
def backward_by_grad(self, tensor, grad):
def backward_by_grad(self, tensor, grad, inputs: Tensor = None, retain_graph: bool = False):
"""
Backpropagate gradients through the model using a precomputed gradient and optionally synchronize sequence parallelism gradients.
@ -826,7 +826,7 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
None
"""
# Call the superclass backward_by_grad method to compute gradients.
super().backward_by_grad(tensor, grad)
super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
if self.require_grad_sync and self.model.shard_config.enable_sequence_parallelism:
# If gradient synchronization is required, sync sequence parallelism gradients.
@ -1030,6 +1030,7 @@ class HybridParallelPlugin(PipelinePluginBase):
custom_policy: Policy = None,
pp_style: str = "1f1b",
num_model_chunks: int = 1,
scheduler_nodes: List = None,
num_layers_per_stage: Optional[List[int]] = None,
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None,
enable_metadata_cache: bool = True,
@ -1048,6 +1049,9 @@ class HybridParallelPlugin(PipelinePluginBase):
dist.get_world_size() % (tp_size * pp_size) == 0
), f"World size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
assert (
not pp_style == "zbv" or scheduler_nodes is not None
), f"scheduler_nodes must not be None when using zero bubble pipeline."
if enable_sequence_parallelism:
self.sequence_parallelism_mode = (
sequence_parallelism_mode if sequence_parallelism_mode is not None else "all_to_all"
@ -1109,29 +1113,39 @@ class HybridParallelPlugin(PipelinePluginBase):
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.dp_size, self.tp_size, self.sp_size)
self.stage_manager = None
self.schedule = None
self.scheduler = None
self.custom_policy = custom_policy
assert zero_stage in (0, 1, 2)
if self.pp_size > 1:
assert pp_style in ["1f1b", "interleaved"], "Unsupported pipeline parallelism style"
assert pp_style == "interleaved" or num_model_chunks == 1, "num_model_chunks must be 1 when using 1f1b"
assert pp_style in ["1f1b", "interleaved", "zbv"], "Unsupported pipeline parallelism style"
assert (
pp_style in ["interleaved", "zbv"] or num_model_chunks == 1
), "num_model_chunks must be 1 when using 1f1b"
assert (
pp_style in ["1f1b", "interleaved"] or num_model_chunks == 2
), "num_model_chunks must be 2 when using zero bubble pipeline"
assert (
num_microbatches is not None or microbatch_size is not None
), "num_microbatches or microbatch_size must be specified when using pipeline parallelism"
assert (
self.zero_stage <= 1
), "To avoid prohibitive gradient synchronization costs, zero stage must be 0 or 1 when using pipeline parallelism"
if pp_style == "zbv":
self.logger.warning(
"""the enable_gradient_checkpointing function must set the use_reentrant to False, such as model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={'use_reentrant':False})"""
)
self.stage_manager = PipelineStageManager(
self.pg_mesh,
pipeline_axis=self.pp_axis,
enable_interleave=pp_style == "interleaved",
enable_interleave=(pp_style == "interleaved" or pp_style == "zbv"),
use_zbv=(pp_style == "zbv"),
num_model_chunks=num_model_chunks,
num_layers_per_stage=num_layers_per_stage,
)
if pp_style == "interleaved":
assert num_model_chunks > 1, "number of model chunks must be > 1 when using interleaved"
self.schedule = InterleavedSchedule(
self.scheduler = InterleavedSchedule(
stage_manager=self.stage_manager,
num_model_chunks=num_model_chunks,
num_microbatch=num_microbatches,
@ -1141,13 +1155,21 @@ class HybridParallelPlugin(PipelinePluginBase):
fp8_communication=fp8_communication,
)
elif pp_style == "1f1b":
self.schedule = OneForwardOneBackwardSchedule(
self.scheduler = OneForwardOneBackwardSchedule(
stage_manager=self.stage_manager,
num_microbatches=num_microbatches,
microbatch_size=microbatch_size,
enable_metadata_cache=enable_metadata_cache,
fp8_communication=fp8_communication,
)
elif pp_style == "zbv":
self.scheduler = ZeroBubbleVPipeScheduler(
stage_manager=self.stage_manager,
schedule=scheduler_nodes,
num_model_chunks=num_model_chunks,
num_microbatch=num_microbatches,
microbatch_size=microbatch_size,
)
else:
raise NotImplementedError()
if sequence_parallelism_mode == "ring_attn":
@ -1263,7 +1285,6 @@ class HybridParallelPlugin(PipelinePluginBase):
# Replace with distributed implementation if exists
optimizer = cast_to_distributed(optimizer)
if isinstance(optimizer, DistGaloreAwamW) and zero_stage > 0 and self.dp_size > 0:
self.logger.warning(
"Galore is only supported for Tensor Parallel and vanilla Data Parallel yet. Disabling ZeRO.",
@ -1278,6 +1299,7 @@ class HybridParallelPlugin(PipelinePluginBase):
self.dp_size == 1 and self.pp_size == 1
)
# sync gradients across DP * SP ranks
# sync gradients across DP * SP ranks
# Apply Hybrid ZeRO across DP * SP ranks
if self.enable_sequence_parallelism and not is_share_sp_tp(self.sequence_parallelism_mode):
dp_group = self.pg_mesh.create_group_along_axis([self.dp_axis, self.sp_axis])
@ -1380,7 +1402,7 @@ class HybridParallelPlugin(PipelinePluginBase):
ctx = optimizer.no_sync() if isinstance(optimizer, HybridParallelZeroOptimizer) else model.no_sync()
with ctx, model._hook_context():
outputs = self.schedule.forward_backward_step(
outputs = self.scheduler.forward_backward_step(
model, data_iter, criterion, optimizer, return_loss, return_outputs
)

@ -29,6 +29,7 @@ from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import cast_to_distributed
from colossalai.pipeline.schedule.interleaved_pp import InterleavedSchedule
from colossalai.pipeline.schedule.one_f_one_b import OneForwardOneBackwardSchedule
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.policies.base_policy import Policy
from colossalai.shardformer.shard.grad_ckpt_config import GradientCheckpointConfig
@ -212,6 +213,7 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
custom_policy: Policy = None,
pp_style: str = "1f1b",
num_model_chunks: int = 1,
scheduler_nodes: List = None,
num_layers_per_stage: Optional[List[int]] = None,
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None,
enable_metadata_cache: bool = True,
@ -285,12 +287,17 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.moe_dp_size, self.ep_size, self.tp_size, self.sp_size)
self.stage_manager = None
self.schedule = None
self.scheduler = None
self.custom_policy = custom_policy
assert zero_stage in (0, 1, 2)
if self.pp_size > 1:
assert pp_style in ["1f1b", "interleaved"], "Unsupported pipeline parallelism style"
assert pp_style == "interleaved" or num_model_chunks == 1, "num_model_chunks must be 1 when using 1f1b"
assert pp_style in ["1f1b", "interleaved", "zbv"], "Unsupported pipeline parallelism style"
assert (
pp_style in ["interleaved", "zbv"] or num_model_chunks == 1
), "num_model_chunks must be 1 when using 1f1b"
assert (
pp_style in ["1f1b", "interleaved"] or num_model_chunks == 2
), "num_model_chunks must be 2 when using zero bubble pipeline"
assert (
num_microbatches is not None or microbatch_size is not None
), "num_microbatches or microbatch_size must be specified when using pipeline parallelism"
@ -300,14 +307,15 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
self.stage_manager = PipelineStageManager(
self.pg_mesh,
pipeline_axis=self.pp_axis,
enable_interleave=pp_style == "interleaved",
enable_interleave=(pp_style == "interleaved" or pp_style == "zbv"),
num_model_chunks=num_model_chunks,
num_layers_per_stage=num_layers_per_stage,
use_zbv=(pp_style == "zbv"),
)
if pp_style == "interleaved":
assert num_model_chunks > 1, "number of model chunks must be > 1 when using interleaved"
self.schedule = InterleavedSchedule(
self.scheduler = InterleavedSchedule(
stage_manager=self.stage_manager,
num_model_chunks=num_model_chunks,
num_microbatch=num_microbatches,
@ -316,12 +324,21 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
overlap_p2p=overlap_p2p,
)
elif pp_style == "1f1b":
self.schedule = OneForwardOneBackwardSchedule(
self.scheduler = OneForwardOneBackwardSchedule(
stage_manager=self.stage_manager,
num_microbatches=num_microbatches,
microbatch_size=microbatch_size,
enable_metadata_cache=enable_metadata_cache,
)
elif pp_style == "zbv":
assert num_model_chunks > 1, "number of model chunks must be > 1 when using ZerbubbleV"
self.scheduler = ZeroBubbleVPipeScheduler(
schedule=scheduler_nodes,
stage_manager=self.stage_manager,
num_model_chunks=num_model_chunks,
num_microbatch=num_microbatches,
overlap_p2p=overlap_p2p,
)
else:
raise NotImplementedError()

@ -49,14 +49,31 @@ class OptimizerWrapper:
"""
self.optim.zero_grad(*args, **kwargs)
def backward(self, loss: Tensor, *args, **kwargs):
def backward(self, loss: Tensor, inputs=None, retain_graph=False, **kwargs):
"""
Performs a backward pass on the loss.
"""
loss.backward(*args, **kwargs)
loss.backward(inputs=inputs, retain_graph=retain_graph, **kwargs)
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
torch.autograd.backward(tensor, grad)
def backward_by_grad(self, tensor: Tensor, grad: Tensor, inputs: Tensor = None, retain_graph: bool = False):
"""
Performs a backward pass for dx or dw,
for dx, we only calculate dx = w*dy here
for dw, we only calculate dw = x*dy here
Args:
tensor (Tensor): y or loss of current chunk;
grad_tensors (Tensor): dy of current chunk;
input_obj (Tensor): for dx, input_obj is x of current chunk;
for dw, input_obj is w of current chunk;
retain_graph (bool): default to be True, we retain graph in backward_b
"""
torch.autograd.backward(
tensors=tensor,
grad_tensors=grad,
inputs=inputs,
retain_graph=retain_graph,
)
def state_dict(self):
"""

@ -1,11 +1,12 @@
from .p2p import PipelineP2PCommunication
from .schedule import InterleavedSchedule, OneForwardOneBackwardSchedule, PipelineSchedule
from .schedule import InterleavedSchedule, OneForwardOneBackwardSchedule, PipelineSchedule, ZeroBubbleVPipeScheduler
from .stage_manager import PipelineStageManager
__all__ = [
"PipelineSchedule",
"OneForwardOneBackwardSchedule",
"InterleavedSchedule",
"ZeroBubbleVPipeScheduler",
"PipelineP2PCommunication",
"PipelineStageManager",
]

@ -432,7 +432,6 @@ def _communicate(
overlap_p2p=overlap_p2p,
send_first=send_first if send_first != None else True,
)
if metadata_recv is not None:
assert isinstance(metadata_recv, P2PMetadata)
tree_spec = metadata_recv.tree_spec

@ -1,9 +1,11 @@
from .base import PipelineSchedule
from .interleaved_pp import InterleavedSchedule
from .one_f_one_b import OneForwardOneBackwardSchedule
from .zero_bubble_pp import ZeroBubbleVPipeScheduler
__all__ = [
"PipelineSchedule",
"OneForwardOneBackwardSchedule",
"InterleavedSchedule",
"ZeroBubbleVPipeScheduler",
]

@ -137,6 +137,16 @@ def retain_grad(x: Any) -> None:
x.retain_grad()
def require_grad(x: Any) -> None:
"""Call require_grad on a tensor.
Args:
x (Any): Object to be called.
"""
if isinstance(x, torch.Tensor) and not x.requires_grad:
x.requires_grad_()
def detach(x: Any) -> Any:
"""Call detach() on a tensor.
@ -151,6 +161,34 @@ def detach(x: Any) -> Any:
return x
def clone(x: Any) -> Any:
"""Call clone() on a tensor.
Args:
x (Any): Object to be called.
Returns:
Any: The cloned object.
"""
if isinstance(x, torch.Tensor):
return x.clone()
return x
def release_tensor_data(x: Any) -> Any:
"""Call untyped_storage().resize_(0) on a tensor. Use to release tensor.data and keep grad_fn.
Args:
x (Any): Object to be called.
Returns:
Any: The deallocate .data object.
"""
if isinstance(x, torch.Tensor):
return x.data.untyped_storage().resize_(0)
return x
def merge_batch(data: List[Any], batch_size_dim=0) -> Any:
"""Merge micro batches into a batch.

@ -0,0 +1,449 @@
# Refer from Zero Bubble Pipeline Parallelism.
# Github: https://github.com/sail-sg/zero-bubble-pipeline-parallelism
# Paper: https://arxiv.org/abs/2401.10241
# The following applies to all files unless otherwise noted:
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from collections import deque
from dataclasses import dataclass
@dataclass(eq=True, frozen=True)
class ScheduledNode:
type: str
chunk: int
stage: int
minibatch: int
start_time: int = 0
completion_time: int = 0
rollback: bool = False
class PipelineGraph(object):
"""PipelineGraph"""
def __init__(
self,
n_stage,
n_micro,
f_cost,
b_cost,
w_cost,
c_cost,
f_mem,
b_mem,
w_mem,
max_mem=None,
):
self.n_node = 6 * n_stage * n_micro
self.n_stage = n_stage
self.n_micro = n_micro
self.f_cost = f_cost
self.b_cost = b_cost
self.w_cost = w_cost
self.c_cost = c_cost
self.f_mem = f_mem
self.b_mem = b_mem
self.w_mem = w_mem
self.fbw_cost = [f_cost, b_cost, w_cost]
self.fbw_mem = [f_mem, b_mem, w_mem]
self.max_mem = max_mem or f_mem * self.n_stage * 2
def get_id(self, cat, chunk, stage, micro):
return (
cat * 2 * self.n_stage * self.n_micro + chunk * self.n_stage * self.n_micro + stage * self.n_micro + micro
)
def try_v_schedule(self, fill_f=True, fill_b=True, approved_bubble=None):
count = []
for i in range(self.n_stage):
count.append([0] * 6)
end_time = [-1] * self.n_node
cur_time = [0] * self.n_stage
mem = [0] * self.n_stage
stage_bubble = [0] * self.n_stage
pending_w = [deque() for _ in range(self.n_stage)]
schedule = [[] for _ in range(self.n_stage)]
stage_str = [" " * i for i in range(self.n_stage)]
if approved_bubble is None:
approved_bubble = [-1] * self.n_stage
max_approved_bubble = max(approved_bubble)
def get_max_stage_bubble(stage=-1):
max_stage_bubble = 0
for bb in stage_bubble:
max_stage_bubble = max(max_stage_bubble, bb)
if stage >= 0:
max_stage_bubble = max(max_stage_bubble, max_approved_bubble - approved_bubble[stage])
return max_stage_bubble
def put_w(stage):
assert len(pending_w[stage]) > 0
_, chunk_, _ = pending_w[stage].popleft()
put(2, chunk_, stage)
def put(cat, chunk, stage, assert_cnt=True):
_tmp = _no_bubble = cur_time[stage] + self.fbw_cost[cat]
_cnt = count[stage][cat * 2 + chunk]
# assert _cnt < self.n_micro
if _cnt >= self.n_micro:
if not assert_cnt:
stage_str[stage] += " "
cur_time[stage] = _tmp # TODO
return
assert False
assert mem[stage] + self.fbw_mem[cat] <= self.max_mem
stage_str[stage] += "FfBbWw"[cat * 2 + chunk] + str(_cnt + 1) + " " * (3 - len(str(_cnt + 1)))
if cat > 0 or chunk > 0:
last_id = cat * 2 + chunk - 1
if cat < 2:
assert end_time[self.get_id(last_id // 2, last_id % 2, stage, _cnt)] >= 0
else:
assert end_time[self.get_id(1, chunk, stage, _cnt)] >= 0
if chunk == 1 and cat < 2:
if stage < self.n_stage - 1:
_fa_id = self.get_id(cat, chunk, stage + 1, _cnt)
assert end_time[_fa_id] >= 0
_tmp = max(_tmp, end_time[_fa_id] + self.c_cost + self.fbw_cost[cat])
if chunk == 0 and cat < 2:
if stage > 0:
_fa_id = self.get_id(cat, chunk, stage - 1, _cnt)
assert end_time[_fa_id] >= 0, f"{cat}, {chunk}, {stage}, {_cnt}"
_tmp = max(_tmp, end_time[_fa_id] + self.c_cost + self.fbw_cost[cat])
_id = self.get_id(cat, chunk, stage, _cnt)
if count[stage][0] > 0:
stage_bubble[stage] += _tmp - _no_bubble
end_time[_id] = _tmp
cur_time[stage] = _tmp
mem[stage] += self.fbw_mem[cat]
# noinspection PyTypeChecker
schedule[stage].append((cat, chunk, _cnt))
if cat == 1:
pending_w[stage].append((2, chunk, _cnt))
count[stage][cat * 2 + chunk] += 1
for i in range(self.n_stage):
put(0, 0, i)
for i in range(self.n_stage - 1, -1, -1):
if i == self.n_stage - 1:
put(0, 1, i)
continue
tmp = end_time[self.get_id(0, 1, i + 1, 0)] + self.c_cost
while (
mem[i] + self.fbw_mem[0] * (2 + i * 2) <= self.max_mem
and cur_time[i] + self.fbw_cost[0] <= tmp
and count[i][0] < self.n_micro
):
for j in range(i + 1):
put(0, 0, j)
put(0, 1, i)
iter_chunk_ = 0
end_tmp = 0
for i in range(self.n_stage):
if i == 0:
end_tmp = cur_time[0] + self.fbw_cost[1]
continue
tmp = end_tmp + self.c_cost
while (
count[i][0] + count[i][1] < count[i - 1][0] + count[i - 1][1]
or count[i][1] <= count[i - 1][1] < self.n_micro
):
for j in range(self.n_stage - 1, i - 1, -1):
if count[j][iter_chunk_] < self.n_micro:
put(0, iter_chunk_, j)
iter_chunk_ = 1 - iter_chunk_
for _ in range(2 * self.n_micro):
# check mem before putting b
for i in range(self.n_stage):
while mem[i] + self.fbw_mem[1] > self.max_mem:
assert len(pending_w[i]) > 0
put_w(i)
b0_ranks, b1_ranks = [], []
for i in range(self.n_stage):
if count[i][3] >= count[i][2]:
b0_ranks.append(i)
elif i == self.n_stage - 1:
b1_ranks.append(i)
else:
fa_id = self.get_id(1, 1, i + 1, count[i][3])
if end_time[fa_id] >= 0 or count[i][2] >= self.n_micro:
b1_ranks.append(i)
else:
b0_ranks.append(i)
b_ranks = []
# put b1
for i in reversed(b1_ranks):
b_ranks.append((i, 1))
# put b0
for i in b0_ranks:
b_ranks.append((i, 0))
for i, _chunk_ in b_ranks:
fa_id = -1
if _chunk_ == 1 and i < self.n_stage - 1:
fa_id = self.get_id(1, 1, i + 1, count[i][3])
if _chunk_ == 0 and i > 0:
fa_id = self.get_id(1, 0, i - 1, count[i][2])
while (
len(pending_w[i]) > 0
and fa_id >= 0
and end_time[fa_id] + self.c_cost >= cur_time[i] + self.fbw_cost[2]
):
# fill the bubble
put_w(i)
if (
len(pending_w[i]) > 0
and end_time[fa_id] + self.c_cost - cur_time[i] > get_max_stage_bubble(i) - stage_bubble[i]
):
if _chunk_ == 1:
put_w(i)
elif fill_b:
put_w(i)
put(1, _chunk_, i)
# put f
for i in range(self.n_stage):
if count[i][1] >= self.n_micro:
continue
put_item = None
if count[i][1] >= count[i][0]:
put_item = 0
elif i == self.n_stage - 1:
put_item = 1
else:
if end_time[self.get_id(0, 1, i + 1, count[i][1])] >= 0:
put_item = 1
elif count[i][0] < self.n_micro:
if i == 0:
put_item = 0
elif end_time[self.get_id(0, 0, i - 1, count[i][0])] >= 0:
put_item = 0
if put_item is None:
continue
# check mem before putting f
while mem[i] + self.fbw_mem[0] > self.max_mem:
assert len(pending_w[i]) > 0
put_w(i)
fa_id = -1
if put_item == 0 and i > 0:
fa_id = self.get_id(0, 0, i - 1, count[i][0])
if put_item == 1 and i < self.n_stage - 1:
fa_id = self.get_id(0, 1, i + 1, count[i][1])
while (
len(pending_w[i]) > 0
and fa_id >= 0
and end_time[fa_id] + self.c_cost >= cur_time[i] + self.fbw_cost[2]
):
# fill the bubble
put_w(i)
if (
len(pending_w[i]) > 0
and end_time[fa_id] + self.c_cost - cur_time[i] > get_max_stage_bubble(i) - stage_bubble[i]
):
if fill_f:
put_w(i)
put(0, put_item, i)
for i in range(self.n_stage):
while len(pending_w[i]) > 0:
put_w(i)
max_bubble = get_max_stage_bubble()
expected_time = sum(self.fbw_cost) * self.n_micro * 2
max_bubble / expected_time
if max_approved_bubble < 0 or max_bubble < max_approved_bubble:
_schedule, _end_time, _max_bubble = self.try_v_schedule(
fill_f=fill_f,
fill_b=fill_b,
approved_bubble=stage_bubble,
)
if _max_bubble < max_bubble:
return _schedule, _end_time, _max_bubble
return schedule, end_time, max_bubble
def print_details(self, end_time, print_scaling=1):
for stage in range(self.n_stage):
stage_str = ["."] * int(max(end_time) / print_scaling)
for _cat in range(3):
for _chunk in range(2):
for _micro in range(self.n_micro):
_id = self.get_id(_cat, _chunk, stage, _micro)
if end_time[_id] < 0:
continue
end = int(end_time[_id] / print_scaling)
start = int((end_time[_id] - self.fbw_cost[_cat]) / print_scaling)
for j in range(start, end):
if j == start or j == end - 1:
stage_str[j] = "FfBbWw"[_cat * 2 + _chunk]
elif j == start + 1:
if _micro >= 10:
stage_str[j] = str(_micro // 10)
else:
stage_str[j] = str(_micro)
elif j == start + 2 and _micro >= 10:
stage_str[j] = str(_micro % 10)
else:
stage_str[j] = "-"
_str = ""
for _c in stage_str:
_str += _c
print(_str)
def get_v_schedule(self, only_run_time=False):
schedule, end_time, max_bubble = None, None, None
expected_time = sum(self.fbw_cost) * self.n_micro * 2
for fill_b in [True, False]:
for fill_f in [True, False]:
_schedule, _end_time, _max_bubble = self.try_v_schedule(fill_b=fill_b, fill_f=fill_f)
if max_bubble is None or _max_bubble < max_bubble:
max_bubble = _max_bubble
schedule = _schedule
end_time = _end_time
if only_run_time:
return max_bubble + expected_time
max_bubble / (expected_time + max_bubble)
local_order = [[] for _ in range(self.n_stage)]
comm_id = {}
comm_id_counter = 0
post_validation_time = 0
for i in range(self.n_stage - 1, -1, -1):
pv_id = min(2 * (self.n_stage - 1 - i), self.n_micro - 1)
post_validation_time = max(
post_validation_time, end_time[self.get_id(0, 0, i, pv_id)] - self.fbw_cost[0] - self.c_cost
)
# post_validation_time = 0
for it in ["RECV_", "SEND_", ""]:
if i == 0 and it == "SEND_":
continue
if i == self.n_stage - 1 and it == "RECV_":
continue
# stage_ = i - 1 if it == "RECV_" else i
stage_ = i
local_order[stage_].append(
ScheduledNode(
type=it + "POST_VALIDATION",
chunk=0,
stage=stage_,
minibatch=0,
start_time=post_validation_time,
completion_time=post_validation_time,
)
)
comm_id[local_order[stage_][-1]] = comm_id_counter
comm_id_counter += 1
for i in range(self.n_stage):
for _cat_, _chunk_, _micro_ in schedule[i]:
complete_time = end_time[self.get_id(_cat_, _chunk_, i, _micro_)]
local_order[i].append(
ScheduledNode(
type="FBW"[_cat_],
chunk=_chunk_ if _cat_ == 0 else 1 - _chunk_,
stage=i,
minibatch=_micro_,
start_time=complete_time - self.fbw_cost[_cat_],
completion_time=complete_time,
)
)
if _cat_ == 2: # no communication for W
continue
cat_str = "FORWARD" if _cat_ == 0 else "BACKWARD"
def communicate(send_recv, stage_):
# noinspection PyTypeChecker
local_order[stage_].append(
ScheduledNode(
type=send_recv + cat_str,
chunk=_chunk_ if _cat_ == 0 else 1 - _chunk_,
stage=stage_,
minibatch=_micro_,
start_time=complete_time,
completion_time=complete_time,
)
)
comm_id[local_order[stage_][-1]] = comm_id_counter
if _chunk_ == 1 and i > 0:
communicate("SEND_", i)
communicate("RECV_", i - 1)
if _chunk_ == 0 and i < self.n_stage - 1:
communicate("SEND_", i)
communicate("RECV_", i + 1)
comm_id_counter += 1
for rank in range(self.n_stage):
# For nodes with the same timestamp on the same stage, communication will be prioritized.
def even_breaker(x: ScheduledNode):
# Compute nodes are always delayed.
if x.type in ["F", "B", "W"]:
return comm_id_counter
# For comm nodes, order by their unique comm id
return comm_id[x]
local_order[rank] = list(sorted(local_order[rank], key=lambda x: (x.start_time, even_breaker(x))))
# If a recv with intersects with previous computation, reorder them so that recv
# is executed before computation and hence can be overlapped.
for i in range(len(local_order[rank])):
if (
i > 0
and local_order[rank][i - 1].type in {"F", "B", "W"}
and local_order[rank][i].type.startswith("RECV")
and "POST_VALIDATION" not in local_order[rank][i].type
and local_order[rank][i].start_time <= local_order[rank][i - 1].completion_time
):
local_order[rank][i], local_order[rank][i - 1] = local_order[rank][i - 1], local_order[rank][i]
local_order_with_rollback = [[] for _ in range(self.n_stage)]
for rank in range(self.n_stage):
rollback_comm = set()
if rank > 0:
for node in local_order[rank - 1]:
if node.type == "POST_VALIDATION":
break
if node.type == "SEND_FORWARD":
assert node.chunk == 0
rollback_comm.add(node.minibatch)
for node in local_order[rank]:
if node.type == "RECV_FORWARD" and node.chunk == 0 and node.minibatch in rollback_comm:
rollback = True
rollback_comm.remove(node.minibatch)
else:
rollback = False
local_order_with_rollback[rank].append(
ScheduledNode(
type=node.type,
chunk=node.chunk,
stage=node.stage,
minibatch=node.minibatch,
start_time=node.start_time,
completion_time=node.completion_time,
rollback=rollback,
)
)
assert len(rollback_comm) == 0
return local_order_with_rollback

@ -0,0 +1,958 @@
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
import torch
import torch.cuda
import torch.distributed
from torch.nn import Module, ModuleList
from torch.utils._pytree import tree_flatten, tree_map
from colossalai.accelerator import get_accelerator
from colossalai.interface import OptimizerWrapper
from colossalai.pipeline.p2p import PipelineP2PCommunication, create_send_metadata
from colossalai.pipeline.schedule.v_schedule import ScheduledNode
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.pipeline.weight_grad_store import WeightGradStore
from ._utils import (
clone,
detach,
get_batch_size,
get_micro_batch,
merge_batch,
model_forward,
release_tensor_data,
require_grad,
retain_grad,
to_device,
)
from .base import PipelineSchedule
AUTO_SCHEDULE_COMMUNICATION_TYPES = {"RECV_FORWARD", "RECV_BACKWARD", "SEND_FORWARD", "SEND_BACKWARD"}
def _wait_p2p(wait_handles: List[torch.cuda.Event]) -> None:
if wait_handles is not None:
for req in wait_handles:
req.wait()
class ZeroBubbleVPipeScheduler(PipelineSchedule):
def __init__(
self,
stage_manager: PipelineStageManager,
schedule: List[ScheduledNode],
num_model_chunks: int,
num_microbatch: Optional[int] = None,
microbatch_size: Optional[int] = None,
enable_metadata_cache: bool = True,
overlap_p2p: bool = True,
):
super().__init__(stage_manager)
# batch info
self.num_microbatch = num_microbatch
self.microbatch_size = microbatch_size
self.num_model_chunks = num_model_chunks
self.batch: Any
self.batch_size: int
self.last_batch_size: Optional[int] = None
self.microbatch_offset: List[int]
self.schedules = schedule
# TODO: optim post valid
self.do_post_validation = False
# P2PMeta cache
self.enable_metadata_cache = enable_metadata_cache
# check send_tensor_metadata, send_grad_metadata
# pp4 as sample, we should follow this meta strategy
# send_tensor_meta(fwd) send_grad_meta(bwd)
# chunk0 | chunk1 chunk0 | chunk 1
# stage 0 T | F F | T
# stage 1 T | T T | T
# stage 2 T | T T | T
# stage 3 F | T F | T
if stage_manager.is_first_stage(ignore_chunk=True):
self.send_tensor_metadata = [True, False]
self.send_grad_metadata = [False, True]
elif stage_manager.is_last_stage(ignore_chunk=True):
self.send_tensor_metadata = [False, True]
self.send_grad_metadata = [True, False]
else:
self.send_tensor_metadata = [True, True]
self.send_grad_metadata = [True, True]
# meta cache buffer
self.tensor_metadata_recv = [None, None] # [chunk 0 meta, chunk 1 meta]
self.grad_metadata_recv = [None, None]
# P2P communication
self.comm = PipelineP2PCommunication(stage_manager, overlap_p2p=overlap_p2p)
# init communication map
self.communication_map = {
"SEND_FORWARD": self.send_forward,
"RECV_FORWARD": self.recv_forward,
"SEND_BACKWARD": self.send_backward,
"RECV_BACKWARD": self.recv_backward,
}
# init buffer
self._free_buffers()
def _free_buffers(self):
# free local buffer
# two dim array, first dim is the model chunk, second dim is the microbatch queue
# x & y buffer for schedule b
self.input_tensors = [[], []]
self.output_tensors = [[], []]
# y & dy buffer for schedule w
self.output_tensors_dw = [[], []]
self.output_tensors_grad_dw = [[], []]
# buffer for communication
self.send_forward_buffer = [[], []] # [chunk0:[torch.Tensor], chunk1:[torch.Tensor]]
self.recv_forward_buffer = [
[],
[],
] # [chunk0:[(torch.Tensor, wait_handle)], chunk1:[(torch.Tensor, wait_handle)]]
self.send_backward_buffer = [[], []] # [chunk0:[torch.Tensor], chunk1:[torch.Tensor]]
self.recv_backward_buffer = [
[],
[],
] # [chunk0:[(torch.Tensor, wait_handle)], chunk1:[(torch.Tensor, wait_handle)]]
# y buffer for local send fwd
self.local_send_forward_buffer = []
# dy buffer for local send bwd
self.local_send_backward_buffer = []
# wait pp buffer
self.wait_handles = []
def assert_buffer_empty(self):
# assert buffer is empty at end
assert len(self.input_tensors[0]) == 0
assert len(self.input_tensors[1]) == 0
assert len(self.output_tensors[0]) == 0
assert len(self.output_tensors[1]) == 0
assert len(self.output_tensors_dw[0]) == 0
assert len(self.output_tensors_dw[1]) == 0
assert len(self.output_tensors_grad_dw[0]) == 0
assert len(self.output_tensors_grad_dw[1]) == 0
assert len(self.send_forward_buffer[0]) == 0
assert len(self.send_forward_buffer[1]) == 0
assert len(self.recv_forward_buffer[0]) == 0
assert len(self.recv_forward_buffer[1]) == 0
assert len(self.send_backward_buffer[0]) == 0
assert len(self.send_backward_buffer[1]) == 0
assert len(self.recv_backward_buffer[0]) == 0
assert len(self.recv_backward_buffer[1]) == 0
assert len(self.local_send_forward_buffer) == 0
assert len(self.local_send_backward_buffer) == 0
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None:
"""Load a batch from data iterator.
Args:
data_iter (Iterable): Data iterator.
device (Optional[torch.device], optional): Target device. Defaults to None.
"""
batch = next(data_iter)
if device is not None:
batch = tree_map(partial(to_device, device=device), batch)
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
self.batch = batch
self.batch_size = get_batch_size(batch)
if self.microbatch_size is None:
assert self.batch_size % self.num_microbatch == 0, "Batch size should divided by the number of microbatch"
self.microbatch_size = self.batch_size // self.num_microbatch
if self.num_microbatch is None:
assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size"
self.num_microbatch = self.batch_size // self.microbatch_size
if not self.forward_only:
assert self.last_batch_size is None or self.last_batch_size == self.batch_size
assert self.batch_size == self.microbatch_size * self.num_microbatch
assert (
self.num_microbatch % self.stage_manager.num_stages == 0
), "Number of microbatch should be an integer multiple of number of pipeline parallel devices"
if self.forward_only:
self.num_microbatch = (self.batch_size - 1) // self.microbatch_size + 1
self.last_batch_size = self.batch_size
def load_micro_batch(self, model_chunk_id: int) -> Any:
"""Load a micro batch from the current batch.
Args:
microbatch_id (int): the current model chunk idx.
Returns:
Any: Micro batch.
"""
assert self.microbatch_offset[model_chunk_id] <= self.batch_size, "Microbatches exhausted"
micro_batch = get_micro_batch(self.batch, self.microbatch_offset[model_chunk_id], self.microbatch_size)
self.microbatch_offset[model_chunk_id] += self.microbatch_size
return tree_map(partial(to_device, device=get_accelerator().get_current_device()), micro_batch)
def get_model_chunk_id(self, microbatch_id: int, is_forward: bool) -> int:
"""Helper method to get the model chunk ID given the iteration number.
Args:
microbatch_id (int): the current microbatch idx
forward (bool): if is the forward process
Returns:
int: The model chunk idx of the input microbatch_id
"""
assert (
microbatch_id < self.num_microbatch * self.num_model_chunks
), f"microbatch_id {microbatch_id} is out of range ({self.num_microbatch * self.num_model_chunks})"
microbatch_id_in_group = microbatch_id % (self.stage_manager.num_stages * self.num_model_chunks)
model_chunk_id = microbatch_id_in_group // self.stage_manager.num_stages
if not is_forward:
# Reverse order
model_chunk_id = self.num_model_chunks - model_chunk_id - 1
return model_chunk_id
def recv_forward(self, model_chunk_id: int, prev_rank: int = None) -> List:
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage.
For ZBV.
Args:
model_chunk_id (int): The current model chunk idx.
prev_rank (int, optional): The rank of the source of the tensor.
Returns:
Any: The input tensor or input tensor list.
Any: The wait handles for the communication.
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if model_chunk_id == 0:
################
# chunk = 0 & is_first_stage
# do nothing; cause u are chunk 0 in first rank, u have no prev rank;
#################
if self.stage_manager.is_first_stage(ignore_chunk=True):
return []
################
# chunk = 0 & not is_first_stage
# Recv y from PREV_rank as input
#################
else:
prev_rank = self.stage_manager.get_prev_rank()
input_tensor, wait_handles = self.comm.recv_forward(
prev_rank=prev_rank, metadata_recv=self.tensor_metadata_recv[model_chunk_id]
)
if self.enable_metadata_cache and self.tensor_metadata_recv[model_chunk_id] is None:
self.tensor_metadata_recv[model_chunk_id] = create_send_metadata(input_tensor)
self.recv_forward_buffer[model_chunk_id].append((input_tensor, wait_handles))
return wait_handles
else:
################
# chunk = 1 & is_last_stage
# do nothing; cause u get y from local_send_forward_buffer in schedule f
################
if self.stage_manager.is_last_stage(ignore_chunk=True):
# return None, []
return []
################
# chunk = 1 & not is_last_stage
# recv y from NEXT_rank as input
################
else:
next_rank = self.stage_manager.get_next_rank()
input_tensor, wait_handles = self.comm.recv_forward(
next_rank, metadata_recv=self.tensor_metadata_recv[model_chunk_id]
)
if self.enable_metadata_cache and self.tensor_metadata_recv[model_chunk_id] is None:
self.tensor_metadata_recv[model_chunk_id] = create_send_metadata(input_tensor)
self.recv_forward_buffer[model_chunk_id].append((input_tensor, wait_handles))
return wait_handles
def recv_backward(self, model_chunk_id: int, next_rank: int = None) -> List:
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage.
For ZBV.
Args:
model_chunk_id (int): The current model chunk idx.
next_rank (int, optional): The rank of the source of the tensor.
Returns:
Any: The input gradient tensor or gradient tensor list.
Any: The wait handles for the communication.
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if model_chunk_id == 0:
# bwd chunk0 is right V;
################
# chunk = 0 & is_last_stage
# do nothing; Already get dy from local_send_backward_buffer in schedule b
################
if self.stage_manager.is_last_stage(ignore_chunk=True):
return []
################
# chunk = 0 & not is_last_stage
# Recv bwd from next stage;
################
else:
next_rank = self.stage_manager.get_next_rank()
output_tensor_grad, wait_handles = self.comm.recv_backward(
next_rank, metadata_recv=self.grad_metadata_recv[model_chunk_id]
)
if self.enable_metadata_cache and self.grad_metadata_recv[model_chunk_id] is None:
self.grad_metadata_recv[model_chunk_id] = create_send_metadata(output_tensor_grad)
self.recv_backward_buffer[model_chunk_id].append((output_tensor_grad, wait_handles))
return wait_handles
else:
# bwd chunk1 is left V;
################
# chunk = 1 & is_first_stage
# do nothing; get loss from local
################
if self.stage_manager.is_first_stage(ignore_chunk=True):
return []
################
# chunk = 1 & not first stage
# recv_backward recv bwd from prev stage;
################
else:
prev_rank = self.stage_manager.get_prev_rank()
output_tensor_grad, wait_handles = self.comm.recv_backward(
next_rank=prev_rank, metadata_recv=self.grad_metadata_recv[model_chunk_id]
)
if self.enable_metadata_cache and self.grad_metadata_recv[model_chunk_id] is None:
self.grad_metadata_recv[model_chunk_id] = create_send_metadata(output_tensor_grad)
self.recv_backward_buffer[model_chunk_id].append((output_tensor_grad, wait_handles))
return wait_handles
def send_forward(self, model_chunk_id: int, next_rank: int = None) -> List:
"""Sends the input tensor to the next stage in pipeline.
For ZBV.
Args:
model_chunk_id (int): The current model chunk idx.
next_rank (int, optional): The rank of the recipient of the tensor.
Returns:
Any: The wait handles for the communication.
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if model_chunk_id == 0:
################
# chunk = 0 && is_last_stage
# do nothing; hold y on local_send_forward_buffer
################
if self.stage_manager.is_last_stage(ignore_chunk=True):
self.send_tensor_metadata[model_chunk_id] = not self.enable_metadata_cache
return []
################
# chunk = 0 && not is_last_stage
# self.comm.send_forward send y to NEXT stage
################
else:
next_rank = self.stage_manager.get_next_rank()
output_tensor = self.send_forward_buffer[model_chunk_id].pop(0)
send_handles = self.comm.send_forward(
output_object=output_tensor,
next_rank=next_rank,
send_metadata=self.send_tensor_metadata[model_chunk_id],
)
self.send_tensor_metadata[model_chunk_id] = not self.enable_metadata_cache
return send_handles
else:
################
# chunk = 1 && is_first_stage
# do nothing; Already send LOSS to local_send_backward_buffer in schedule f send part
################
if self.stage_manager.is_first_stage(ignore_chunk=True):
self.send_tensor_metadata[model_chunk_id] = not self.enable_metadata_cache
return []
################
# chunk = 1 && not is_first_stage
# self.comm.send_forward send y to PREV stage
################
else:
prev_rank = self.stage_manager.get_prev_rank()
output_tensor = self.send_forward_buffer[model_chunk_id].pop(0)
send_handles = self.comm.send_forward(
output_tensor, prev_rank, send_metadata=self.send_tensor_metadata[model_chunk_id]
)
self.send_tensor_metadata[model_chunk_id] = not self.enable_metadata_cache
return send_handles
def send_backward(self, model_chunk_id: int, prev_rank: int = None) -> List:
"""Sends the gradient tensor to the previous stage in pipeline.
For ZBV.
Args:
model_chunk_id (int): The current model chunk idx.
prev_rank (int, optional): The rank of the recipient of the tensor
Returns:
Any: The wait handles for the communication.
"""
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
if model_chunk_id == 0:
# bwd chunk0 is right V;
################
# chunk = 0 && is_first_stage
# do nothing; cause u are the first chunk in first stage; bwd end
################
if self.stage_manager.is_first_stage(ignore_chunk=True):
self.send_grad_metadata[model_chunk_id] = not self.enable_metadata_cache
return []
################
# chunk = 0 && not is_first_stage
# Send dx to PREV stage;
################
else:
prev_rank = self.stage_manager.get_prev_rank()
input_tensor_grad = self.send_backward_buffer[model_chunk_id].pop(0)
send_handles = self.comm.send_backward(
input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata[model_chunk_id]
)
self.send_grad_metadata[model_chunk_id] = not self.enable_metadata_cache
return send_handles
# bwd chunk1 is left V;
else:
################
# chunk = 1 && is_last_stage
# do nothing; Already send input_tensor_grad to local_send_bwd_buffer in schedule b;
################
if self.stage_manager.is_last_stage(ignore_chunk=True):
self.send_grad_metadata[model_chunk_id] = not self.enable_metadata_cache
return []
################
# chunk = 1 && not is_last_stage
# Send dx to NEXT stage;
################
else:
next_rank = self.stage_manager.get_next_rank()
input_tensor_grad = self.send_backward_buffer[model_chunk_id].pop(0)
send_handles = self.comm.send_backward(
input_tensor_grad, next_rank, send_metadata=self.send_grad_metadata[model_chunk_id]
)
self.send_grad_metadata[model_chunk_id] = not self.enable_metadata_cache
return send_handles
def forward_step(
self,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
micro_batch: Optional[dict],
input_obj: Optional[dict],
criterion: Callable,
accum_loss: Optional[torch.Tensor] = None,
outputs: Optional[List[Any]] = None,
) -> Union[torch.Tensor, dict]:
"""Forward one step of the pipeline
Args:
model_chunk (ModuleList or Module): Model Chunk to be run;
model_chunk_id (int): The current model chunk idx;
input_obj (Optional[dict]): x;
criterion (Callable): loss function;
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None.
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None.
Returns:
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor).
"""
# Load input ids, attention mask and labels
# for the first stage, input_obj is None; So,we use micro_batch as input_obj
# for other stages, input_obj is the output of the previous/next stage containing hidden_states etc.
# Only attention_mask from micro_batch is used
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
# fwd calculate
internal_inputs = {} if input_obj is None else input_obj
internal_inputs["stage_index"] = self.stage_manager.stage_indices[model_chunk_id]
output_obj = model_forward(model_chunk, micro_batch, internal_inputs)
# last layer in model
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
loss = criterion(output_obj, micro_batch) / self.num_microbatch
if accum_loss is not None:
accum_loss.add_(loss.detach())
if outputs is not None:
outputs.append(tree_map(detach, output_obj))
return loss
else:
return output_obj
def backward_b_step(
self,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
optimizer: OptimizerWrapper,
# micro_batch: Optional[dict],
input_obj: Optional[dict],
output_obj: Union[dict, torch.Tensor],
output_obj_grad: Optional[dict],
) -> Optional[dict]:
"""Backward dx step of the pipeline; we calculate "dx = w*dy" here;
Args:
model_chunk (ModuleList or Module): Model Chunk to be run;
model_chunk_id (int): The current model chunk idx;
optimizer (OptimizerWrapper): Optimizer to update the model
input_obj (Optional[Tuple(dict)]): x. (microbatch, input_obj)
output_obj (Union[dict, torch.Tensor]): y.
output_obj_grad (dict): dy.
Returns:
Optional[dict]: dx.
"""
# calculate bwd b step ; only dx = w*dy;
# Retain the grad on the input_obj. No need retain_grad microbatch
if input_obj is not None:
tree_map(retain_grad, input_obj)
# x, y, dy list for backward_by_grad; Type: list[tensor];
input_obj_ = []
output_obj_ = []
output_obj_grad_ = []
# For chunk 0 stage 0, use micro_batch as input_obj_; and we don't have to cal microbatch dx.
# For loss backward; output_obj is loss; output_obj_grad should be None
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
assert output_obj_grad is None
input_obj_, _ = tree_flatten(input_obj)
output_obj_.append(output_obj) # LOSS
output_obj_grad_.append(output_obj_grad) # None
# For other chunk stage, use input_obj as input_obj_;
else:
input_obj_, _ = tree_flatten(input_obj)
output_obj_, _ = tree_flatten(output_obj) # y
output_obj_grad_, _ = tree_flatten(output_obj_grad) # dy
# filter item which is not torch.Tensor
input_obj_ = [v for v in input_obj_ if isinstance(v, torch.Tensor) or v is None]
output_obj_ = [v for v in output_obj_ if isinstance(v, torch.Tensor) or v is None]
output_obj_grad_ = [v for v in output_obj_grad_ if isinstance(v, torch.Tensor) or v is None]
try:
ctx = optimizer.no_sync()
except AttributeError:
ctx = model_chunk.no_sync()
with ctx:
optimizer.backward_by_grad(
tensor=output_obj_,
grad=output_obj_grad_,
# inputs=input_obj_,
retain_graph=False,
)
# Format output_obj_grad
input_obj_grad = dict()
if model_chunk_id == 0 and self.stage_manager.is_first_stage(ignore_chunk=True):
pass
else:
for k, v in input_obj.items():
if isinstance(v, torch.Tensor) and v.grad is not None:
input_obj_grad[k] = v.grad
return input_obj_grad
def backward_w_step(
self,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
optimizer: OptimizerWrapper,
output_obj: Union[dict, torch.Tensor],
output_obj_grad: Optional[dict],
):
"""Backward dw step of the pipeline; we calculate "dw = x*dy" here;
Args:
model_chunk (ModuleList or Module): Model Chunk to be run;
model_chunk_id (int): The current model chunk idx;
optimizer (OptimizerWrapper): Optimizer to update the model
output_obj (Union[dict, torch.Tensor]): y.
output_obj_grad (dict): dy.
Returns:
Nothing need to return; we only calculate dw then update w;
"""
# calculate bwd w step ; only dw = x*dy;
# y, dy list for w backward_by_grad; Type: list[tensor];
output_obj_ = []
output_obj_grad_ = []
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
# loss backward; output_obj is loss;
output_obj_.append(output_obj) # LOSS
output_obj_grad_.append(None) # None
else:
output_obj_, _ = tree_flatten(output_obj) # y
output_obj_grad_, _ = tree_flatten(output_obj_grad) # dy
# filter item which is not torch.Tensor
output_obj_ = [v for v in output_obj_ if isinstance(v, torch.Tensor) or v is None]
output_obj_grad_ = [v for v in output_obj_grad_ if isinstance(v, torch.Tensor) or v is None]
optimizer.backward_by_grad(
tensor=output_obj_,
grad=output_obj_grad_,
inputs=list(model_chunk.parameters()),
retain_graph=False,
)
def schedule_f(
self,
scheduled_node,
model_chunk: torch.nn.ModuleList,
model_chunk_id: int,
criterion: Callable,
accum_loss: Optional[torch.Tensor] = None,
outputs: Optional[List[Any]] = None,
):
"""A complete forward schedule; Include recv fwd --> cal fwd --> send fwd;
Args:
scheduled_node:
model_chunk (ModuleList or Module): Model Chunk to be run;
model_chunk_id (int): The current model chunk idx;
criterion (Callable): loss function;
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None.
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None.
Returns:
Nothing.
"""
micro_batch = self.load_micro_batch(model_chunk_id=model_chunk_id)
# Step1: recv fwd
if model_chunk_id == 0:
# is first stage; get input from microbatch
if self.stage_manager.is_first_stage(ignore_chunk=True):
input_obj = None # (tensor, wait_handle)
else:
input_obj = self.recv_forward_buffer[model_chunk_id].pop(0)
for h in input_obj[1]:
h.wait()
input_obj = input_obj[0]
else:
# is last stage; recv from local
if self.stage_manager.is_last_stage(ignore_chunk=True):
input_obj = self.local_send_forward_buffer.pop(0)
# not last stage; recv from next
else:
input_obj = self.recv_forward_buffer[model_chunk_id].pop(0)
for h in input_obj[1]:
h.wait()
input_obj = input_obj[0]
# Here, let input_obj.requires_grad_()
# if input_obj is not None:
if not isinstance(input_obj, torch.Tensor):
tree_map(require_grad, input_obj)
# Also requires_grad_ for micro_batch in stage 0 chunk 0 fwd,
# tree_map(torch.Tensor.requires_grad_, micro_batch)
# Step2: fwd step
output_obj = self.forward_step(
model_chunk=model_chunk,
model_chunk_id=model_chunk_id,
micro_batch=micro_batch,
input_obj=input_obj,
criterion=criterion,
accum_loss=accum_loss,
outputs=outputs,
)
# Step3:
# 3-1:detach output; detach output for send fwd;
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
# We should not detach bwd LOSS
pass
else:
# detach output
detached_output_obj = tree_map(detach, output_obj)
# 3-2 clone detached_output_obj
detached_output_obj = tree_map(clone, detached_output_obj)
# 3-3 release cloned output.data; release_tensor_data output for bwd b & w; (do not detach output)
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
# We should not release_tensor_data bwd LOSS
pass
else:
# release_tensor_data output
tree_map(release_tensor_data, output_obj)
# add input and output object for backward b
self.input_tensors[model_chunk_id].append(input_obj)
# for bwd b&w, we only need the graph(grad_fn) of output_obj
# Do not release_tensor_data loss, release_tensor_data other output_obj;
if model_chunk_id == 1 and self.stage_manager.is_first_stage(ignore_chunk=True):
self.output_tensors[model_chunk_id].append(output_obj)
else:
self.output_tensors[model_chunk_id].append(output_obj)
# add output to send_fwd_buffer
if model_chunk_id == 0: # chunk 0
# is last stage; send to local_send_forward_buffer
if self.stage_manager.is_last_stage(ignore_chunk=True):
self.local_send_forward_buffer.append(detached_output_obj)
else:
self.send_forward_buffer[model_chunk_id].append(detached_output_obj)
else: # chunk 1
# is first stage; end of fwd; do nothing
if self.stage_manager.is_first_stage(ignore_chunk=True):
pass
else:
self.send_forward_buffer[model_chunk_id].append(detached_output_obj)
def schedule_b(
self,
scheduled_node,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
optimizer: OptimizerWrapper,
):
"""A complete backward b schedule; Include recv bwd --> cal bwd step --> send bwd;
Args:
scheduled_node:
model_chunk (ModuleList or Module): Model Chunk to be run;
model_chunk_id (int): The current model chunk idx;
Returns:
Nothing.
"""
# Step1: recv bwd
if model_chunk_id == 0:
# chunk0 is last stage; recv output_grad from local_send_backward_buffer
if self.stage_manager.is_last_stage(ignore_chunk=True):
output_tensor_grad = self.local_send_backward_buffer.pop(0)
# chunk0 not last stage; recv output_grad from recv_backward_buffer
else:
output_tensor_grad = self.recv_backward_buffer[model_chunk_id].pop(0)
for h in output_tensor_grad[1]:
h.wait()
output_tensor_grad = output_tensor_grad[0]
else:
# chunk1, is first stage; recv LOSS from local send bwd buffer
if self.stage_manager.is_first_stage(ignore_chunk=True):
output_tensor_grad = None
# chunk1, not first stage; recv output_grad from recv_backward_buffer
else:
output_tensor_grad = self.recv_backward_buffer[model_chunk_id].pop(0)
for h in output_tensor_grad[1]:
h.wait()
output_tensor_grad = output_tensor_grad[0]
# get input and output object from buffer;
input_obj = self.input_tensors[model_chunk_id].pop(0)
output_obj = self.output_tensors[model_chunk_id].pop(0)
input_object_grad = self.backward_b_step(
model_chunk=model_chunk,
model_chunk_id=model_chunk_id,
optimizer=optimizer,
input_obj=input_obj,
output_obj=output_obj,
output_obj_grad=output_tensor_grad,
)
# Step3: send bwd
if model_chunk_id == 0:
# do nothing; end of bwd;
if self.stage_manager.is_first_stage(ignore_chunk=True):
pass
# save input_object_grad to send_backward_buffer
else:
self.send_backward_buffer[model_chunk_id].append(input_object_grad)
else:
# send to local_send_backward_buffer
if self.stage_manager.is_last_stage(ignore_chunk=True):
self.local_send_backward_buffer.append(input_object_grad)
# send to next
else:
self.send_backward_buffer[model_chunk_id].append(input_object_grad)
WeightGradStore.flush(chunk=model_chunk_id)
def schedule_w(
self,
scheduled_node,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
optimizer: OptimizerWrapper,
):
"""A complete backward w schedule; Include get y & dy from buffer --> cal bwd w step(cal dw & update w);
Args:
scheduled_node:
model_chunk (ModuleList or Module): Model Chunk to be run;
model_chunk_id (int): The current model chunk idx;
Returns:
Nothing.
"""
WeightGradStore.pop(chunk=model_chunk_id)
def run_forward_only(
self,
model_chunk: Union[ModuleList, Module],
data_iter: Iterable,
criterion: Callable[..., Any],
return_loss: bool = False,
return_outputs: bool = False,
) -> Dict:
assert self.forward_only
# prepare batch
self.load_batch(data_iter)
# prepare accum loss & output
accum_loss = None
# reset accum loss at fwd end;
if return_loss and self.stage_manager.is_first_stage(ignore_chunk=True):
accum_loss = torch.scalar_tensor(0, device=get_accelerator().get_current_device())
outputs = [] if return_outputs and self.stage_manager.is_first_stage(ignore_chunk=True) else None
# while we still have schedules_node in self.schedules
for it in range(len(self.schedules)):
scheduled_node = self.schedules[it]
if scheduled_node.type in {"RECV_FORWARD", "SEND_FORWARD"}:
# communication
communication_func = self.communication_map[scheduled_node.type]
communication_func(scheduled_node.chunk)
if scheduled_node.type == "F":
self.schedule_f(
scheduled_node=scheduled_node,
model_chunk=model_chunk,
model_chunk_id=scheduled_node.chunk,
criterion=criterion,
accum_loss=accum_loss,
outputs=outputs,
)
# return loss & output
if outputs is not None:
outputs = merge_batch(outputs)
return {"loss": accum_loss, "outputs": outputs}
def run_forward_backward(
self,
model_chunk: Union[ModuleList, Module],
data_iter: Iterable,
criterion: Callable[..., Any],
optimizer: Optional[OptimizerWrapper] = None,
return_loss: bool = False,
return_outputs: bool = False,
) -> Dict:
"""
Runs Zerobubble schedule, with communication between pipeline stages.
"""
# prepare batch
self.load_batch(data_iter)
# prepare accum loss & output
accum_loss = None
# reset accum loss at fwd end;
if return_loss and self.stage_manager.is_first_stage(ignore_chunk=True):
accum_loss = torch.scalar_tensor(0, device=get_accelerator().get_current_device())
outputs = [] if return_outputs and self.stage_manager.is_first_stage(ignore_chunk=True) else None
# while we still have schedules_node in self.schedules
schedule = self.schedules[self.stage_manager.stage] # get schedule by stage (rank)
for it in range(len(schedule)):
scheduled_node = schedule[it]
if scheduled_node.type in AUTO_SCHEDULE_COMMUNICATION_TYPES:
# communication
communication_func = self.communication_map[scheduled_node.type]
wait_handle = communication_func(scheduled_node.chunk)
# We wait recv handle in fwd step and bwd step. Here only need to wait for send handle
if scheduled_node.type in {"SEND_FORWARD", "SEND_BACKWARD"}:
self.wait_handles.append(wait_handle)
elif scheduled_node.type == "F":
self.schedule_f(
scheduled_node=scheduled_node,
model_chunk=model_chunk,
model_chunk_id=scheduled_node.chunk,
criterion=criterion,
accum_loss=accum_loss,
outputs=outputs,
)
elif scheduled_node.type == "B":
self.schedule_b(
scheduled_node=scheduled_node,
model_chunk=model_chunk,
model_chunk_id=scheduled_node.chunk,
optimizer=optimizer,
)
elif scheduled_node.type == "W":
self.schedule_w(
scheduled_node=scheduled_node,
model_chunk=model_chunk,
model_chunk_id=scheduled_node.chunk,
optimizer=optimizer,
)
# wait here to ensure all communication is done
for h in self.wait_handles:
for hh in h:
hh.wait()
# return loss & output
if outputs is not None:
outputs = merge_batch(outputs)
return {"loss": accum_loss, "outputs": outputs}
def forward_backward_step(
self,
model_chunk: Union[ModuleList, Module],
data_iter: Iterable,
criterion: Callable[..., Any],
optimizer: Optional[OptimizerWrapper] = None,
return_loss: bool = False,
return_outputs: bool = False,
) -> dict:
"""
Args:
model_chunk (ModuleList or Module): Model Chunk to be trained. Original interleaved uses a module list whereas shardformer uses entire model + layer specification
data_iter (Iterable): Data iterator.
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None.
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
Returns:
dict: A dict with keys: 'loss' and 'outputs'.
"""
self.forward_only = not torch.is_grad_enabled()
if optimizer is None:
assert self.forward_only, "Optimizer should be passed when doing backward."
if self.forward_only:
result = self.run_forward_only(model_chunk, data_iter, criterion, return_loss, return_outputs)
else:
result = self.run_forward_backward(
model_chunk, data_iter, criterion, optimizer, return_loss, return_outputs
)
self.assert_buffer_empty()
return result

@ -26,6 +26,7 @@ class PipelineStageManager:
pg_mesh: ProcessGroupMesh,
pipeline_axis: int,
enable_interleave: bool = False,
use_zbv: bool = False,
num_model_chunks: int = 1,
num_layers_per_stage: Optional[List[int]] = None,
) -> None:
@ -49,6 +50,7 @@ class PipelineStageManager:
next_coord = coord[: self.pipeline_axis] + (coord[self.pipeline_axis] + 1,) + coord[self.pipeline_axis + 1 :]
self.next_rank = self.pg_mesh.ravel(next_coord, self.pg_mesh.shape, mode="wrap")
self.is_interleave = enable_interleave
self.use_zbv = use_zbv
# for interleaved pipeline parallel, each device is responsible for multiple chunk of layers
self.num_model_chunks: int = num_model_chunks
# for shardformer, hold stage indices of model
@ -85,6 +87,16 @@ class PipelineStageManager:
num_layers_per_stage_accumulated = np.insert(np.cumsum(layers_per_stage), 0, 0)
stage_indices = []
if self.use_zbv:
stage_indices.append([num_layers_per_stage_accumulated[stage], num_layers_per_stage_accumulated[stage + 1]])
stage_indices.append(
[
num_layers_per_stage_accumulated[2 * num_stages - stage - 1],
num_layers_per_stage_accumulated[2 * num_stages - stage],
]
)
return stage_indices
for model_chunk in range(num_model_chunks):
start_idx = num_layers_per_stage_accumulated[stage + model_chunk * num_stages]
end_idx = num_layers_per_stage_accumulated[stage + model_chunk * num_stages + 1]
@ -124,7 +136,11 @@ class PipelineStageManager:
if not self.is_interleave or ignore_chunk:
return self.stage == self.num_stages - 1
else:
return self.stage == self.num_stages - 1 and self.model_chunk_id == self.num_model_chunks - 1
# use zero bubble pipeline
if self.use_zbv:
return self.stage == 0 and self.model_chunk_id == self.num_model_chunks - 1
else:
return self.stage == self.num_stages - 1 and self.model_chunk_id == self.num_model_chunks - 1
@property
def num_stages(self) -> int:
@ -207,7 +223,6 @@ class PipelineStageManager:
# calculate the num_layers per stage
layers_per_stage = [quotient] * num_stages * num_model_chunks
# deal with the rest layers
if remainder > 0:
start_position = (num_stages * num_model_chunks) // 2 - remainder // 2

@ -0,0 +1,32 @@
import queue
class WeightGradStore:
cache = []
weight_grad_queue = [queue.Queue(), queue.Queue()]
@classmethod
def put(cls, total_input, grad_output, weight, func):
# func(total_input, grad_output, weight.main_grad)
cls.cache.append((total_input, grad_output, weight, func))
@classmethod
def flush(cls, chunk=0):
cls.weight_grad_queue[chunk].put(cls.cache)
cls.cache = []
@classmethod
def pop(cls, chunk=0):
# print(f"chunk id {chunk} queue size {cls.weight_grad_queue[chunk].qsize()}")
if cls.weight_grad_queue[chunk].qsize() > 0:
stored_grads = cls.weight_grad_queue[chunk].get()
for total_input, grad_output, weight, func in stored_grads:
if weight.grad is not None:
func(total_input, grad_output, weight.grad)
# for first bwd; weight.grad is None, assign grad_weight to weight.grad
else:
grad_weight = func(total_input, grad_output)
weight.grad = grad_weight
else:
raise Exception("Pop empty queue.")

@ -2,7 +2,7 @@ from ._operation import all_to_all_comm
from .attn import AttnMaskType, ColoAttention, RingAttention, get_pad_info
from .dropout import DropoutForParallelInput, DropoutForReplicatedInput
from .embedding import Embedding1D, PaddingEmbedding, VocabParallelEmbedding1D
from .linear import Linear1D_Col, Linear1D_Row, PaddingLMHead, VocabParallelLMHead1D
from .linear import Linear1D_Col, Linear1D_Row, LinearWithGradAccum, PaddingLMHead, VocabParallelLMHead1D
from .loss import cross_entropy_1d, dist_cross_entropy
from .normalization import FusedLayerNorm, FusedRMSNorm, LayerNorm, RMSNorm
from .parallel_module import ParallelModule
@ -11,6 +11,7 @@ from .qkv_fused_linear import FusedLinear1D_Col, FusedLinear1D_Row, GPT2FusedLin
__all__ = [
"Embedding1D",
"VocabParallelEmbedding1D",
"LinearWithGradAccum",
"Linear1D_Col",
"Linear1D_Row",
"GPT2FusedLinearConv1D_Col",

@ -1,7 +1,11 @@
import functools
import torch
import torch.distributed as dist
import torch.nn.functional as F
from colossalai.pipeline.weight_grad_store import WeightGradStore
from .utils import is_share_sp_tp
try:
@ -125,12 +129,13 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False):
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_allreduce = async_grad_allreduce
ctx.fp8_communication = fp8_communication
ctx.use_zbv = use_zbv
if bias is not None:
output = F.linear(input_, weight, bias)
else:
@ -143,6 +148,13 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
input, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
fp8_communication = ctx.fp8_communication
use_zbv = ctx.use_zbv
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
return wgrad_gemm_func(_grad_output_.t(), _input_)
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
if use_bias:
@ -164,24 +176,160 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
# Relay on CUDA_DEVICE_MAX_CONNECTIONS=1 to have
# all-reduce scheduled first and have GPU resources allocated, CUDA_DEVICE_MAX_CONNECTIONS=1 is set in shardformer.py
if _grad_accum_fusion_available and weight.grad is not None:
grad = weight.grad
if grad.dtype == torch.float32:
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
grad_weight = None
elif grad.dtype == torch.float16:
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
if use_zbv:
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
if grad.dtype == torch.float32:
WeightGradStore.put(
total_input,
grad_output,
weight,
functools.partial(
execute_w_pass_grad_accum,
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
),
)
grad_weight = None
elif grad.dtype in (torch.float16, torch.bfloat16):
WeightGradStore.put(
total_input,
grad_output,
weight,
functools.partial(
execute_w_pass_grad_accum,
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
),
)
grad_weight = None
else:
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
else:
if grad.dtype == torch.float32:
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
grad_weight = None
elif grad.dtype == torch.float16:
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
grad_weight = None
else:
grad_weight = grad_output.t().matmul(total_input)
else:
if use_zbv:
WeightGradStore.put(
total_input,
grad_output,
weight,
functools.partial(
execute_w_pass,
wgrad_gemm_func=torch.matmul,
),
)
grad_weight = None
else:
grad_weight = grad_output.t().matmul(total_input)
else:
grad_weight = grad_output.t().matmul(total_input)
grad_bias = grad_output.sum(dim=0) if use_bias else None
if ctx.async_grad_allreduce and not fp8_communication:
handle.wait()
return grad_input, grad_weight, grad_bias, None, None, None, None
class LinearWithGradAccum(torch.autograd.Function):
"""
Linear layer baseline (no tensor parallel version).
"""
@staticmethod
def forward(ctx, input_, weight, bias, async_grad_allreduce, use_zbv=False):
ctx.save_for_backward(input_, weight, bias)
ctx.use_bias = bias is not None
ctx.async_grad_allreduce = async_grad_allreduce
ctx.use_zbv = use_zbv
if bias is not None:
output = F.linear(input_, weight, bias)
else:
output = F.linear(input_, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight, bias = ctx.saved_tensors
use_bias = ctx.use_bias
use_zbv = ctx.use_zbv
def execute_w_pass_grad_accum(_input_, _grad_output_, _weight_main_grad_, wgrad_gemm_accum_func=None):
wgrad_gemm_accum_func(_input_, _grad_output_, _weight_main_grad_)
def execute_w_pass(_input_, _grad_output_, _weight_main_grad_=None, wgrad_gemm_func=None):
return wgrad_gemm_func(_grad_output_.t(), _input_)
# In order to be hooked into Gemini's '__torch_function__', adding a view operation to bias.
if use_bias:
bias.view(bias.shape)
total_input = input.contiguous()
grad_input = grad_output.matmul(weight)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility
if len(grad_output.shape) > 2:
grad_output = grad_output.view(-1, grad_output.shape[-1])
total_input = total_input.view(-1, total_input.shape[-1])
if _grad_accum_fusion_available and weight.grad is not None:
grad = weight.grad
if use_zbv:
# TODO: append input, grad_output_, weight, grad func to WeightGradStore
if grad.dtype == torch.float32:
WeightGradStore.put(
total_input,
grad_output,
weight,
functools.partial(
execute_w_pass_grad_accum,
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32,
),
)
grad_weight = None
elif grad.dtype in (torch.float16, torch.bfloat16):
WeightGradStore.put(
total_input,
grad_output,
weight,
functools.partial(
execute_w_pass_grad_accum,
wgrad_gemm_accum_func=fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16,
),
)
grad_weight = None
else:
raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")
else:
if grad.dtype == torch.float32:
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(total_input, grad_output, grad)
grad_weight = None
elif grad.dtype == torch.float16:
fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(total_input, grad_output, grad)
grad_weight = None
else:
grad_weight = grad_output.t().matmul(total_input)
else:
if use_zbv:
WeightGradStore.put(
total_input,
grad_output,
weight,
functools.partial(
execute_w_pass,
wgrad_gemm_func=torch.matmul,
),
)
grad_weight = None
else:
grad_weight = grad_output.t().matmul(total_input)
grad_bias = grad_output.sum(dim=0) if use_bias else None
return grad_input, grad_weight, grad_bias, None, None, None, None
@ -966,12 +1114,18 @@ def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allre
)
def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False):
def linear_with_async_comm(
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication=False, use_zbv=False
):
return LinearWithAsyncCommunication.apply(
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication
input_, weight, bias, process_group, async_grad_allreduce, fp8_communication, use_zbv
)
def linear_with_grad_accum(input_, weight, bias, async_grad_allreduce, use_zbv=False):
return LinearWithGradAccum.apply(input_, weight, bias, async_grad_allreduce, use_zbv)
def linear_gather_forward_reducescatter_backward(
input_, weight, bias, process_group, async_grad_reduce_scatter, dim, ring=False
):

@ -27,13 +27,155 @@ from ._operation import (
linear_gather_forward_reducescatter_backward,
linear_reducescatter_forward_gather_backward,
linear_with_async_comm,
linear_with_grad_accum,
reduce_forward,
split_forward_gather_backward,
)
from .parallel_module import PaddingParallelModule, ParallelModule
from .utils import create_randomizer_with_offset, is_share_sp_tp
__all__ = ["Linear1D_Col", "Linear1D_Row"]
__all__ = ["LinearWithGradAccum", "Linear1D_Col", "Linear1D_Row"]
class LinearWithGradAccum(ParallelModule):
r"""Linear layer with no parallelism.
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample.
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
device (`torch.device`): The device of parameters, defaults to None.
gather_output (bool, optional): If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
overlap (`bool`): If set to ``True``, it will overlap input all-gather with gradient computation during backward, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (`typing.Callable`):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (`typing.Callable`):
The initializer of bias, defaults to xavier uniform initializer.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
device: torch.device = None,
skip_bias_add: bool = False,
weight: Optional[Parameter] = None,
bias_: Optional[Parameter] = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
use_zbv: bool = False,
**kwargs,
):
super().__init__(weight=weight, bias_=bias_, **kwargs)
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.skip_bias_add = skip_bias_add
self.device = device
self.use_zbv = use_zbv
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")
# offset the seed with randomizer index and rank
seed = torch.random.initial_seed()
self.randomizer = create_randomizer_with_offset(seed, process_group=None)
# sanity check
if weight is not None:
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None"
else:
assert bias_ is None, "bias_ must be None if weight is None"
# Parameters.
if weight is None:
factory_kwargs = {"device": device, "dtype": dtype}
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs))
else:
weight.data = weight.data.to(device=device, dtype=dtype)
self.weight = weight
if bias:
if bias_ is None:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
else:
bias_.data = bias_.data.to(device=device, dtype=dtype)
self.bias = bias_
else:
self.bias = None
if weight is None:
# init weights
self.reset_parameters(weight_initializer, bias_initializer)
@staticmethod
def from_native_module(module: nn.Linear, **kwargs) -> ParallelModule:
r"""
Convert a native PyTorch linear layer to a parallelized linear layer.
"""
LazyInitContext.materialize(module)
# get the attributes
in_features = module.in_features
out_features = module.out_features
bias = module.bias is not None
device = module.weight.device
linear_1d = LinearWithGradAccum(
in_features=in_features,
out_features=out_features,
bias=bias,
device=device,
weight=module.weight,
bias_=module.bias,
**kwargs,
)
return linear_1d
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
with self.randomizer.fork_rng(enable_cpu=True):
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
assert (
input_.shape[-1] == self.weight.shape[-1]
), "Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.".format(
input_.shape, self.weight.shape, self.weight.shape[-1]
)
# Set up backprop all-reduce.
input_parallel = input_
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
output_parallel = linear_with_grad_accum(
input_parallel,
self.weight,
bias,
False,
use_zbv=self.use_zbv,
)
output = output_parallel
if self.skip_bias_add:
return output, self.bias
else:
return output
class Linear1D_Col(ParallelModule):
@ -81,6 +223,7 @@ class Linear1D_Col(ParallelModule):
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
fp8_communication: bool = False,
use_zbv: bool = False,
**kwargs,
):
super().__init__(weight=weight, bias_=bias_, **kwargs)
@ -95,6 +238,7 @@ class Linear1D_Col(ParallelModule):
self.device = device
self.process_group = process_group
self.fp8_communication = fp8_communication
self.use_zbv = use_zbv
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")
@ -209,9 +353,14 @@ class Linear1D_Col(ParallelModule):
)
else:
output_parallel = linear_with_async_comm(
input_parallel, self.weight, bias, self.process_group, True, fp8_communication=self.fp8_communication
input_parallel,
self.weight,
bias,
self.process_group,
True,
fp8_communication=self.fp8_communication,
use_zbv=self.use_zbv,
)
if self.gather_output:
# All-gather across the partitions.
output = gather_forward_split_backward(
@ -267,6 +416,7 @@ class Linear1D_Row(ParallelModule):
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
stream_chunk_num: int = 1,
fp8_communication: bool = False,
use_zbv: bool = False,
):
super().__init__()
@ -282,6 +432,7 @@ class Linear1D_Row(ParallelModule):
self.seq_parallel_dim = seq_parallel_dim
self.num_partitions = dist.get_world_size(self.process_group)
self.fp8_communication = fp8_communication
self.use_zbv = use_zbv
if skip_bias_add and not bias:
raise ValueError("cannot skip bias addition if bias is None")

@ -82,7 +82,7 @@ class LlamaPipelineForwards:
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape[:2]
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
@ -191,7 +191,6 @@ class LlamaPipelineForwards:
num_model_chunks=stage_manager.num_model_chunks,
)
assert num_ckpt_layers <= end_idx - start_idx
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
if output_hidden_states:
all_hidden_states += (hidden_states,)

@ -60,6 +60,7 @@ class EPMixtralSparseMoeBlock(ParallelModule):
moe_dp_group: ProcessGroup,
ep_group: ProcessGroup,
fp8_communication: bool = False,
use_zbv: bool = False,
):
assert tp_group is not None
assert moe_dp_group is not None
@ -70,6 +71,7 @@ class EPMixtralSparseMoeBlock(ParallelModule):
self.ep_rank = dist.get_rank(ep_group)
self.ep_group = ep_group
self.fp8_communication = fp8_communication
self.use_zbv = use_zbv
if self.num_experts % self.ep_size != 0:
raise ValueError("The number of experts must be divisible by the number of expert parallel groups.")
@ -89,13 +91,13 @@ class EPMixtralSparseMoeBlock(ParallelModule):
if self.tp_group.size() > 1:
for expert in held_experts:
expert.w1 = Linear1D_Col.from_native_module(
expert.w1, self.tp_group, fp8_communication=self.fp8_communication
expert.w1, self.tp_group, fp8_communication=self.fp8_communication, use_zbv=self.use_zbv
)
expert.w3 = Linear1D_Col.from_native_module(
expert.w3, self.tp_group, fp8_communication=self.fp8_communication
expert.w3, self.tp_group, fp8_communication=self.fp8_communication, use_zbv=self.use_zbv
)
expert.w2 = Linear1D_Row.from_native_module(
expert.w2, self.tp_group, fp8_communication=self.fp8_communication
expert.w2, self.tp_group, fp8_communication=self.fp8_communication, use_zbv=self.use_zbv
)
for p in self.experts.parameters():
@ -379,7 +381,6 @@ class MixtralPipelineForwards:
output_router_logits,
use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
@ -399,6 +400,7 @@ class MixtralPipelineForwards:
if output_router_logits and past_router_logits is not None:
all_router_logits = past_router_logits + all_router_logits
if stage_manager.is_last_stage():
if not return_dict:
return tuple(
@ -512,7 +514,6 @@ class MixtralPipelineForwards:
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n

@ -75,6 +75,8 @@ class BertPolicy(Policy):
sp_partial_derived = sp_mode == "split_gather"
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
if self.shard_config.enable_tensor_parallelism:
assert (
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
@ -97,6 +99,7 @@ class BertPolicy(Policy):
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -105,6 +108,7 @@ class BertPolicy(Policy):
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -113,6 +117,7 @@ class BertPolicy(Policy):
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -125,6 +130,7 @@ class BertPolicy(Policy):
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -138,6 +144,7 @@ class BertPolicy(Policy):
"seq_parallel_mode": sp_mode,
"skip_bias_add": self.enable_bias_gelu_fused,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -146,6 +153,97 @@ class BertPolicy(Policy):
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="output.dropout",
target_module=col_nn.DropoutForParallelInput,
),
],
)
policy[BertEmbeddings] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="dropout",
target_module=col_nn.DropoutForReplicatedInput,
),
]
)
if self.enable_bias_gelu_fused:
self.append_or_create_method_replacement(
description={
"forward": get_jit_fused_bert_intermediate_forward(),
},
policy=policy,
target_key=BertIntermediate,
)
elif use_zbv:
policy[BertLayer] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attention.self.query",
target_module=col_nn.LinearWithGradAccum,
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="attention.self.key",
target_module=col_nn.LinearWithGradAccum,
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="attention.self.value",
target_module=col_nn.LinearWithGradAccum,
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="attention.self.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="attention.output.dense",
target_module=col_nn.LinearWithGradAccum,
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="attention.output.dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="intermediate.dense",
target_module=col_nn.LinearWithGradAccum,
kwargs={
"seq_parallel_mode": sp_mode,
"skip_bias_add": self.enable_bias_gelu_fused,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="output.dense",
target_module=col_nn.LinearWithGradAccum,
kwargs={
"seq_parallel_mode": sp_mode,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(

@ -9,6 +9,7 @@ from colossalai.shardformer.layer import (
FusedRMSNorm,
Linear1D_Col,
Linear1D_Row,
LinearWithGradAccum,
PaddingEmbedding,
PaddingLMHead,
RMSNorm,
@ -60,6 +61,8 @@ class LlamaPolicy(Policy):
else:
norm_cls = RMSNorm
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
sp_mode = self.shard_config.sequence_parallelism_mode or None
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None
@ -102,7 +105,7 @@ class LlamaPolicy(Policy):
policy=policy,
target_key=LlamaModel,
)
# enable tp, replace layer to tp Linear1D_Col,Linear1D_Row,
if self.shard_config.enable_tensor_parallelism:
assert (
num_q_heads % tp_size == 0
@ -126,37 +129,135 @@ class LlamaPolicy(Policy):
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
],
)
# not enable tp, replace layer to LinearWithGradAccum
elif use_zbv:
policy[LlamaDecoderLayer] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=LinearWithGradAccum,
kwargs=dict(
seq_parallel_mode=sp_mode,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
),
],
)
@ -261,9 +362,10 @@ class LlamaPolicy(Policy):
held_layers.append(module.embed_tokens)
for start_idx, end_idx in stage_indices:
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage(ignore_chunk=True):
if (stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True)) or (
not stage_manager.use_zbv and stage_manager.is_last_stage(ignore_chunk=True)
):
held_layers.append(module.norm)
else:
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
if stage_manager.is_first_stage():
@ -353,11 +455,15 @@ class LlamaForCausalLMPolicy(LlamaPolicy):
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage(ignore_chunk=True):
if (stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True)) or (
not stage_manager.use_zbv and stage_manager.is_last_stage(ignore_chunk=True)
):
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
if self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv:
return []
llama_model = self.model.model
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if (
@ -379,7 +485,9 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
from transformers import LlamaForSequenceClassification
policy = super().module_policy()
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
# enable tp, replace layer to tp Linear1D_Col,Linear1D_Row,
if self.shard_config.enable_tensor_parallelism:
# add a new item for sequence classification
new_item = {
@ -391,12 +499,32 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
kwargs=dict(
gather_output=True,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
)
]
)
}
policy.update(new_item)
# enable tp, replace layer to LinearWithGradAccum
elif use_zbv:
# add a new item for sequence classification
new_item = {
LlamaForSequenceClassification: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="score",
target_module=LinearWithGradAccum,
kwargs=dict(
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
)
]
)
}
policy.update(new_item)
# to be confirmed
if self.pipeline_stage_manager:
# set None as default
@ -411,7 +539,9 @@ class LlamaForSequenceClassificationPolicy(LlamaPolicy):
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage(ignore_chunk=True):
if (stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True)) or (
not stage_manager.use_zbv and stage_manager.is_last_stage(ignore_chunk=True)
):
held_layers.append(self.model.score)
return held_layers

@ -10,6 +10,7 @@ from colossalai.shardformer.layer import (
FusedRMSNorm,
Linear1D_Col,
Linear1D_Row,
LinearWithGradAccum,
PaddingEmbedding,
PaddingLMHead,
VocabParallelEmbedding1D,
@ -62,6 +63,8 @@ class MistralPolicy(Policy):
if self.tie_weight:
embedding_cls = PaddingEmbedding
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
if self.shard_config.enable_sequence_parallelism:
self.shard_config.enable_sequence_parallelism = False
warnings.warn(
@ -90,6 +93,7 @@ class MistralPolicy(Policy):
target_module=Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -97,6 +101,7 @@ class MistralPolicy(Policy):
target_module=Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -104,6 +109,7 @@ class MistralPolicy(Policy):
target_module=Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -111,6 +117,7 @@ class MistralPolicy(Policy):
target_module=Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -118,6 +125,7 @@ class MistralPolicy(Policy):
target_module=Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -125,6 +133,7 @@ class MistralPolicy(Policy):
target_module=Linear1D_Col,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
@ -132,6 +141,68 @@ class MistralPolicy(Policy):
target_module=Linear1D_Row,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
],
)
elif use_zbv:
policy[MistralDecoderLayer] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
],

@ -7,9 +7,18 @@ from torch import Tensor
from torch.nn import Module
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM, MixtralModel
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col
from colossalai.shardformer.layer.embedding import PaddingEmbedding, VocabParallelEmbedding1D
from colossalai.shardformer.layer.linear import Linear1D_Row
from colossalai.shardformer.layer import (
FusedRMSNorm,
Linear1D_Col,
Linear1D_Row,
LinearWithGradAccum,
PaddingEmbedding,
VocabParallelEmbedding1D,
)
# from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col
# from colossalai.shardformer.layer.embedding import PaddingEmbedding, VocabParallelEmbedding1D
# from colossalai.shardformer.layer.linear import Linear1D_Row
from colossalai.shardformer.modeling.mixtral import (
EPMixtralSparseMoeBlock,
MixtralPipelineForwards,
@ -52,6 +61,7 @@ class MixtralPolicy(Policy):
sp_group = self.shard_config.sequence_parallel_process_group or None
sp_partial_derived = sp_mode in ["split_gather", "ring"]
tp_size = self.shard_config.tensor_parallel_size
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
# modified for both SP and TP
num_q_heads = self.model.config.num_attention_heads
@ -124,31 +134,92 @@ class MixtralPolicy(Policy):
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs={"fp8_communication": self.shard_config.fp8_communication},
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="block_sparse_moe.gate",
target_module=Linear1D_Col,
kwargs={"gather_output": True, "fp8_communication": self.shard_config.fp8_communication},
kwargs={
"gather_output": True,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
],
)
elif use_zbv:
policy[MixtralDecoderLayer] = ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
SubModuleReplacementDescription(
suffix="block_sparse_moe.gate",
target_module=LinearWithGradAccum,
kwargs={
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
),
],
)
if embedding_cls is not None:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
@ -179,6 +250,7 @@ class MixtralPolicy(Policy):
"tp_group": self.shard_config.tensor_parallel_process_group,
"moe_dp_group": self.shard_config.moe_dp_group,
"fp8_communication": self.shard_config.fp8_communication,
"use_zbv": use_zbv,
},
)
],
@ -258,14 +330,30 @@ class MixtralPolicy(Policy):
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
if stage_manager.is_first_stage():
held_layers.append(module.embed_tokens)
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.norm)
if stage_manager.is_interleave:
assert stage_manager.num_model_chunks is not None
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
stage_indices = stage_manager.get_stage_index(layers_per_stage)
stage_manager.stage_indices = stage_indices
if stage_manager.is_first_stage(ignore_chunk=True):
held_layers.append(module.embed_tokens)
for start_idx, end_idx in stage_indices:
held_layers.extend(module.layers[start_idx:end_idx])
if (stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True)) or (
not stage_manager.use_zbv and stage_manager.is_last_stage(ignore_chunk=True)
):
# for zbv, when is_first_stage (last fwd), we append norm
# for interleaved, when is_last_stage (last fwd), we also append norm
held_layers.append(module.norm)
else:
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
if stage_manager.is_first_stage():
held_layers.append(module.embed_tokens)
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.norm)
return held_layers
@ -297,6 +385,7 @@ class MixtralModelPolicy(MixtralPolicy):
class MixtralForCausalLMPolicy(MixtralPolicy):
def module_policy(self):
policy = super().module_policy()
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
# TODO: assign pg mesh from plugin to all modules
if self.shard_config.enable_tensor_parallelism:
# add a new item for causal lm
@ -306,9 +395,29 @@ class MixtralForCausalLMPolicy(MixtralPolicy):
SubModuleReplacementDescription(
suffix="lm_head",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
gather_output=True,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
)
]
],
)
}
policy.update(new_item)
elif use_zbv:
new_item = {
MixtralForCausalLM: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=LinearWithGradAccum,
kwargs=dict(
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
)
],
)
}
policy.update(new_item)
@ -327,7 +436,9 @@ class MixtralForCausalLMPolicy(MixtralPolicy):
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage():
if stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True):
held_layers.append(self.model.lm_head)
elif stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(self.model.lm_head)
return held_layers
@ -353,6 +464,7 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
from transformers import MixtralForSequenceClassification
policy = super().module_policy()
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
if self.shard_config.enable_tensor_parallelism:
# add a new item for sequence classification
@ -362,7 +474,11 @@ class MixtralForSequenceClassificationPolicy(MixtralPolicy):
SubModuleReplacementDescription(
suffix="score",
target_module=Linear1D_Col,
kwargs=dict(gather_output=True, fp8_communication=self.shard_config.fp8_communication),
kwargs=dict(
gather_output=True,
fp8_communication=self.shard_config.fp8_communication,
use_zbv=use_zbv,
),
)
]
)

@ -351,7 +351,7 @@ class GeminiDDP(ModelWrapper):
loss.backward()
self._post_backward()
def backward_by_grad(self, tensor, grad):
def backward_by_grad(self, tensor, grad, inputs: torch.Tensor = None, retain_graph: bool = False):
raise RuntimeError("Gemini is not compatible with pipeline. backward_by_grad shoudn't be called in Gemini.")
@staticmethod

@ -300,12 +300,14 @@ class GeminiOptimizer(OptimizerWrapper):
loss = self.mix_precision_mixin.pre_backward(loss)
self.module.backward(loss)
def backward_by_grad(self, tensor: torch.Tensor, grad: torch.Tensor):
def backward_by_grad(
self, tensor: torch.Tensor, grad: torch.Tensor, inputs: torch.Tensor = None, retain_graph: bool = False
):
# This function is called except the last stage of pipeline parallel
# It receives the scaled grad from the previous rank
# No need to scale the grad again
# Need to unscale when optimizing
grad = self.mix_precision_mixin.pre_backward_by_grad(grad)
grad = self.mix_precision_mixin.pre_backward_by_grad(grad, inputs=inputs, retain_graph=retain_graph)
self.module.backward_by_grad(tensor, grad)
def _maybe_move_fp32_params(self):

@ -448,7 +448,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
# torch.optim.Optimizer methods
################################
def backward(self, loss, retain_graph=False):
def backward(self, loss, inputs=None, retain_graph=False):
assert not (
self._partition_grads and not self.require_grad_sync
), "ZeRO2(partition_grads) and no_sync are not compatible"
@ -458,7 +458,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
ctx = nullcontext() if self._backward_context is None else self._backward_context()
with ctx:
loss.backward(retain_graph=retain_graph)
loss.backward(inputs=inputs, retain_graph=retain_graph)
if not self.require_grad_sync:
return
@ -469,14 +469,19 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
if self._overlap_communication:
get_accelerator().synchronize()
def backward_by_grad(self, tensor, grad):
def backward_by_grad(self, tensor, grad, inputs: Tensor = None, retain_graph: bool = False):
assert not (
self._partition_grads and not self.require_grad_sync
), "ZeRO2(partition_grads) and gradient accumulation(no_sync) are not compatible"
if self.mixed_precision_mixin is not None:
grad = self.mixed_precision_mixin.pre_backward_by_grad(tensor, grad)
torch.autograd.backward(tensor, grad)
torch.autograd.backward(
tensor,
grad,
inputs=inputs,
retain_graph=retain_graph,
)
if not self.require_grad_sync:
return

@ -21,6 +21,7 @@ from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, TorchF
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.pipeline.schedule.v_schedule import PipelineGraph
from colossalai.shardformer import PipelineGradientCheckpointConfig
warnings.filterwarnings("ignore")
@ -39,6 +40,7 @@ MODEL_CONFIGS = {
),
"5b": LlamaConfig(max_position_embeddings=4096, num_key_value_heads=8),
"7b": LlamaConfig(max_position_embeddings=4096),
# "7b": LlamaConfig(num_hidden_layers=4, max_position_embeddings=4096),
"13b": LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
@ -91,7 +93,7 @@ def main():
parser.add_argument("--zero", type=int, default=0, help="Zero Stage when hybrid plugin is enabled")
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False)
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"])
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved", "zbv"])
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval)
parser.add_argument("--profile", action="store_true", help="Profile the code")
parser.add_argument(
@ -106,6 +108,7 @@ def main():
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--use_fp8_comm", action="store_true", default=False, help="for using fp8 during communication")
parser.add_argument("--use_fp8", action="store_true", default=False, help="for using fp8 linear")
parser.add_argument("--overlap_p2p", action="store_true", default=True, help="for using overlap p2p")
parser.add_argument("--overlap_allgather", action="store_true")
parser.add_argument(
"--sp_mode",
@ -137,6 +140,11 @@ def main():
# ==============================
# Initialize Booster
# ==============================
if args.config in MODEL_CONFIGS:
config = MODEL_CONFIGS[args.config]
else:
config = AutoConfig.from_pretrained(args.config, trust_remote_code=True)
use_empty_init = True
if args.plugin == "gemini":
plugin = GeminiPlugin(
@ -210,6 +218,24 @@ def main():
fp8_communication=args.use_fp8_comm,
)
elif args.plugin == "3d":
if args.pp_style == "zbv":
mem_f = 34 * config.hidden_size + 5 * config.num_attention_heads * args.max_length
mem_w = -32 * config.hidden_size
mem_b = -mem_w - mem_f
scheduler_nodes = PipelineGraph(
n_stage=args.pp,
n_micro=args.batch_size // args.mbs,
f_cost=1000,
b_cost=1000,
w_cost=1000,
c_cost=1,
f_mem=mem_f * 1.5,
b_mem=mem_b * 1.5,
w_mem=mem_w * 1.5,
).get_v_schedule()
else:
scheduler_nodes = None
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=args.pp,
@ -227,6 +253,7 @@ def main():
overlap_allgather=args.overlap_allgather,
use_fp8=args.use_fp8,
fp8_communication=args.use_fp8_comm,
scheduler_nodes=scheduler_nodes,
**hybrid_kwargs,
)
elif args.plugin == "3d_cpu":
@ -242,7 +269,7 @@ def main():
microbatch_size=args.mbs,
initial_scale=2**8,
precision="bf16",
overlap_p2p=args.overlap,
overlap_p2p=args.overlap_p2p,
use_fp8=args.use_fp8,
fp8_communication=args.use_fp8_comm,
)
@ -260,6 +287,7 @@ def main():
config = MODEL_CONFIGS[args.config]
else:
config = AutoConfig.from_pretrained(args.config, trust_remote_code=True)
torch.cuda.manual_seed(42)
dataset = RandomDataset(
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
@ -319,7 +347,7 @@ def main():
args.profile,
args.ignore_steps,
1, # avoid creating massive log files
save_dir=f"profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}",
save_dir=f"./profile/{time.strftime('%H:%M', time.localtime())}-{args.plugin}-llama-{args.config}",
nsys=args.nsys,
) as prof:
if isinstance(plugin, HybridParallelPlugin) and args.pp > 1:
@ -334,8 +362,12 @@ def main():
return_loss=True,
)
loss = outputs["loss"]
if dist.get_rank() == dist.get_world_size() - 1:
print(f"Step {step} loss: {loss}")
if args.pp_style == "zbv":
if coordinator.is_master():
print(f"Step {step} loss: {loss}")
else:
if coordinator.is_last_process():
print(f"Step {step} loss: {loss}")
optimizer.step()
optimizer.zero_grad()

@ -11,6 +11,7 @@ from data_utils import RandomDataset
from model_utils import format_numel_str, get_model_numel
from performance_evaluator import PerformanceEvaluator, get_profile_context
from tqdm import tqdm
from transformers import AutoConfig
from transformers.models.mixtral import MixtralConfig, MixtralForCausalLM
import colossalai
@ -20,6 +21,7 @@ from colossalai.booster.plugin import MoeHybridParallelPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.pipeline.schedule.v_schedule import PipelineGraph
from colossalai.shardformer import PipelineGradientCheckpointConfig
warnings.filterwarnings("ignore")
@ -85,7 +87,7 @@ def main():
parser.add_argument("--zero", type=int, default=1, help="Zero Stage when hybrid plugin is enabled")
parser.add_argument("--custom-ckpt", action="store_true", help="Customize checkpoint", default=False)
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved"])
parser.add_argument("--pp_style", default="1f1b", choices=["1f1b", "interleaved", "zbv"])
parser.add_argument("--n_chunks", default=1, help="number of model chunks", type=eval)
parser.add_argument("--profile", action="store_true", help="Profile the code")
parser.add_argument(
@ -129,7 +131,29 @@ def main():
# ==============================
# Initialize Booster
# ==============================
if args.config in MODEL_CONFIGS:
config = MODEL_CONFIGS[args.config]
else:
config = AutoConfig.from_pretrained(args.config, trust_remote_code=True)
if args.plugin == "3d":
if args.pp_style == "zbv":
mem_f = 34 * config.hidden_size + 5 * config.num_attention_heads * args.max_length
mem_w = -32 * config.hidden_size
mem_b = -mem_w - mem_f
scheduler_nodes = PipelineGraph(
n_stage=args.pp,
n_micro=args.batch_size // args.mbs,
f_cost=1000,
b_cost=1000,
w_cost=1000,
c_cost=1,
f_mem=mem_f,
b_mem=mem_b,
w_mem=mem_w,
).get_v_schedule()
else:
scheduler_nodes = None
plugin = MoeHybridParallelPlugin(
ep_size=args.ep,
tp_size=args.tp,
@ -143,11 +167,13 @@ def main():
enable_fused_normalization=torch.cuda.is_available(),
enable_flash_attention=args.xformers,
microbatch_size=args.mbs,
num_microbatches=args.batch_size // args.mbs,
precision="bf16",
enable_metadata_cache=not args.no_cache,
overlap_allgather=args.overlap_allgather,
use_fp8=args.use_fp8,
fp8_communication=args.use_fp8_comm,
scheduler_nodes=scheduler_nodes,
**hybrid_kwargs,
)
else:
@ -183,8 +209,10 @@ def main():
with init_ctx:
model = MixtralForCausalLM(config=config).to(torch.bfloat16)
# if args.grad_checkpoint:
# model.gradient_checkpointing_enable()
if args.grad_checkpoint:
model.gradient_checkpointing_enable()
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
model_numel = get_model_numel(model)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
@ -229,8 +257,12 @@ def main():
return_loss=True,
)
loss = outputs["loss"]
if dist.get_rank() == dist.get_world_size() - 1:
print(f"Step {step} loss: {loss}")
if args.pp_style == "zbv":
if dist.get_rank() == 0:
print(f"Step {step} loss: {loss}")
else:
if dist.get_rank() == dist.get_world_size() - 1:
print(f"Step {step} loss: {loss}")
optimizer.step()
optimizer.zero_grad()

@ -21,11 +21,16 @@ def divide(x: float, y: float) -> float:
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
# Use CPU tensor to avoid OOM/weird NCCl error
gloo_group = dist.new_group(backend="gloo")
tensor = torch.tensor([x], device="cpu")
dist.all_reduce(tensor, group=gloo_group)
# BUG: RuntimeError: Invalid scalar type when use dist.all_reduce(tensor, group=gloo_group)
# # Use CPU tensor to avoid OOM/weird NCCl error
# gloo_group = dist.new_group(backend="gloo")
# tensor = torch.tensor([x], device="cpu")
# dist.all_reduce(tensor, group=gloo_group)
# tensor = tensor / world_size
# return tensor.item()
tensor = torch.tensor([x], device=torch.cuda.current_device(), dtype=torch.float)
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()

@ -15,6 +15,7 @@ class _PipelineStageManager(PipelineStageManager):
self.is_interleave = False
self.num_layers_per_stage = None
self.num_model_chunks = 1
self.use_zbv = False
@property
def num_stages(self):

@ -15,6 +15,7 @@ class _PipelineStageManager(PipelineStageManager):
self.is_interleave = False
self.num_layers_per_stage = None
self.num_model_chunks = 1
self.use_zbv = False
@property
def num_stages(self):

File diff suppressed because it is too large Load Diff

@ -8,7 +8,8 @@ from torch.testing import assert_close
import colossalai
from colossalai.lazy import LazyInitContext
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
from colossalai.pipeline.weight_grad_store import WeightGradStore
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row, LinearWithGradAccum
from colossalai.tensor.d_tensor import is_distributed_tensor
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@ -117,6 +118,93 @@ def check_linear_1d_row(lazy_init: bool, seq_parallel_mode: bool):
assert_close(x_for_unshard.grad, x_for_shard.grad)
def check_linear_without_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = nn.Linear(32, 128).cuda()
with ctx:
linear_copy = nn.Linear(32, 128).cuda()
linear_base = LinearWithGradAccum.from_native_module(
linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=False
)
assert linear_base.weight.shape == torch.Size([128, 32])
assert linear_base.bias.shape == torch.Size([128])
assert linear_copy.weight is linear_base.weight
assert linear_copy.bias is linear_base.bias
linear.load_state_dict(linear_base.state_dict())
linear_base.load_state_dict(linear.state_dict())
# check computation correctness
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone())
x_for_shard.requires_grad_(True)
# run forward
out = linear(x_for_unshard)
gather_out = linear_base(x_for_shard)
assert_close(out, gather_out)
# check backward correctness
out.sum().backward()
gather_out.sum().backward()
assert_close(linear.weight.grad, linear_base.weight.grad)
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
assert_close(x_for_unshard.grad, x_for_shard.grad)
def check_linear_with_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = nn.Linear(32, 128).cuda()
with ctx:
linear_copy = nn.Linear(32, 128).cuda()
linear_base = LinearWithGradAccum.from_native_module(
linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=True
)
assert linear_base.weight.shape == torch.Size([128, 32])
assert linear_base.bias.shape == torch.Size([128])
assert linear_copy.weight is linear_base.weight
assert linear_copy.bias is linear_base.bias
linear.load_state_dict(linear_base.state_dict())
linear_base.load_state_dict(linear.state_dict())
# check computation correctness
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone())
x_for_shard.requires_grad_(True)
# run forward
out = linear(x_for_unshard)
gather_out = linear_base(x_for_shard)
assert_close(out, gather_out)
# check backward correctness
out.sum().backward()
gather_out.sum().backward()
# Weight grad is None before we do WeightGradStore pop
assert linear_base.weight.grad is None
# after WeightGradStore pop (dw computation complete), we assert weight grad
WeightGradStore.flush(chunk=0) # flush buffer to chunk 0 Queue
WeightGradStore.pop(chunk=0)
assert_close(linear.weight.grad, linear_base.weight.grad)
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
assert_close(x_for_unshard.grad, x_for_shard.grad)
def check_linear_col_plus_row(lazy_init: bool, seq_parallel_mode: bool, overlap: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
@ -182,6 +270,8 @@ def run_dist_linear_test(lazy_init, seq_parallel_mode, overlap):
check_linear_1d_col(lazy_init, seq_parallel_mode, overlap)
check_linear_1d_row(lazy_init, seq_parallel_mode)
check_linear_col_plus_row(lazy_init, seq_parallel_mode, overlap)
check_linear_without_weight_grad_store(lazy_init, seq_parallel_mode)
check_linear_with_weight_grad_store(lazy_init, seq_parallel_mode)
def check_dist_linear(rank, world_size, port):

@ -310,8 +310,16 @@ def check_output_hidden_state(
):
org_hidden_state = org_output.last_hidden_state
if stage_manager and stage_manager.is_last_stage(ignore_chunk=True):
sharded_hidden_state = sharded_output["outputs"]["last_hidden_state"]
if stage_manager:
if stage_manager.use_zbv:
if stage_manager.is_first_stage(ignore_chunk=True):
sharded_hidden_state = sharded_output["outputs"]["last_hidden_state"]
else:
sharded_hidden_state = sharded_output.last_hidden_state
elif stage_manager.is_last_stage(ignore_chunk=True):
sharded_hidden_state = sharded_output["outputs"]["last_hidden_state"]
else:
sharded_hidden_state = sharded_output.last_hidden_state
else:
sharded_hidden_state = sharded_output.last_hidden_state
@ -388,7 +396,6 @@ def get_grad_tensors_for_check(
pass
if verbose and dist.get_rank() == 0:
print(f"'{suffix}' grad: {org_grad}, {shard_grad}")
grad_to_check[suffix] = {
"org_grad": org_grad.float(),
"shard_grad": shard_grad.float(),

@ -7,6 +7,7 @@ from torch.testing import assert_close
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.schedule.v_schedule import PipelineGraph
from colossalai.shardformer import PipelineGradientCheckpointConfig
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
@ -33,7 +34,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
)
if enable_gradient_checkpointing:
# org_model.gradient_checkpointing_enable()
sharded_model.unwrap().gradient_checkpointing_enable()
sharded_model.unwrap().gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
@ -112,12 +113,18 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
sharded_optimizer.step()
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage(ignore_chunk=True):
check_flag = False
if (
(stage_manager is None)
or (stage_manager.use_zbv and stage_manager.is_first_stage(ignore_chunk=True))
or (not stage_manager.use_zbv and stage_manager.is_last_stage(ignore_chunk=True))
):
check_flag = True
if check_flag:
if test_config["precision"] == "fp32":
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == "LlamaModel":
check_output_hidden_state(
org_output,
@ -274,6 +281,22 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
)
def run_llama_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_llama")
if test_config.get("pp_style", None) == "zbv":
mem_f = 34 * 32 + 5 * 4 * 16
mem_w = -32 * 32
mem_b = -mem_w - mem_f
scheduler_nodes = PipelineGraph(
n_stage=test_config["pp_size"],
n_micro=test_config["num_microbatches"],
f_cost=1000,
b_cost=1000,
w_cost=1000,
c_cost=1,
f_mem=mem_f,
b_mem=mem_b,
w_mem=mem_w,
).get_v_schedule()
test_config["scheduler_nodes"] = scheduler_nodes
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if test_config.get("sequence_parallelism_mode", None) == "ring_attn" and "causal" not in name:
continue

Loading…
Cancel
Save