mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
10 KiB
289 lines
10 KiB
import os
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.pipeline.weight_grad_store import WeightGradStore
|
|
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row, LinearWithGradAccum
|
|
from colossalai.tensor.d_tensor import is_distributed_tensor
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "1"
|
|
|
|
|
|
def check_linear_1d_col(lazy_init: bool, seq_parallel_mode: bool, overlap: bool):
|
|
ctx = LazyInitContext() if lazy_init else nullcontext()
|
|
linear = nn.Linear(32, 128).cuda()
|
|
with ctx:
|
|
linear_copy = nn.Linear(32, 128).cuda()
|
|
linear_col = Linear1D_Col.from_native_module(
|
|
linear_copy, process_group=None, gather_output=True, seq_parallel_mode=seq_parallel_mode, overlap=overlap
|
|
)
|
|
|
|
# ensure that the parameters are distributed
|
|
assert is_distributed_tensor(linear_col.weight)
|
|
assert is_distributed_tensor(linear_col.bias)
|
|
assert linear_copy.weight is linear_col.weight
|
|
assert linear_copy.bias is linear_col.bias
|
|
|
|
# ensure the shape is correct
|
|
assert linear_col.weight.shape == torch.Size([64, 32])
|
|
assert linear_col.bias.shape == torch.Size([64])
|
|
|
|
# ensure state dict is reversibly loadable
|
|
linear.load_state_dict(linear_col.state_dict())
|
|
linear_col.load_state_dict(linear.state_dict())
|
|
|
|
# check computation correctness
|
|
# [batch_size, seq_len, hidden_size]
|
|
x = torch.rand(2, 4, 32).cuda()
|
|
x_for_unshard = x.expand_as(x.clone())
|
|
x_for_unshard.requires_grad_(True)
|
|
x_for_shard = (
|
|
x.expand_as(x.clone()) if seq_parallel_mode is None else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
|
|
)
|
|
x_for_shard.requires_grad_(True)
|
|
|
|
out = linear(x_for_unshard)
|
|
gather_out = linear_col(x_for_shard)
|
|
assert_close(out, gather_out)
|
|
|
|
# check backward correctness
|
|
out.sum().backward()
|
|
gather_out.sum().backward()
|
|
|
|
rank = dist.get_rank()
|
|
target_grad = torch.chunk(linear.weight.grad, 2, dim=0)[rank]
|
|
assert_close(target_grad, linear_col.weight.grad)
|
|
|
|
# check the input gradients
|
|
assert x_for_shard.grad is not None
|
|
assert x_for_unshard.grad is not None
|
|
target_unshard_gard = (
|
|
x_for_unshard.grad
|
|
if seq_parallel_mode is None
|
|
else torch.chunk(x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()]
|
|
)
|
|
assert_close(target_unshard_gard, x_for_shard.grad)
|
|
|
|
|
|
def check_linear_1d_row(lazy_init: bool, seq_parallel_mode: bool):
|
|
ctx = LazyInitContext() if lazy_init else nullcontext()
|
|
|
|
linear = nn.Linear(32, 128).cuda()
|
|
with ctx:
|
|
linear_copy = nn.Linear(32, 128).cuda()
|
|
linear_row = Linear1D_Row.from_native_module(
|
|
linear_copy, process_group=None, parallel_input=False, seq_parallel_mode=seq_parallel_mode
|
|
)
|
|
|
|
assert linear_row.weight.shape == torch.Size([128, 16])
|
|
assert linear_row.bias.shape == torch.Size([128])
|
|
assert linear_copy.weight is linear_row.weight
|
|
assert linear_copy.bias is linear_row.bias
|
|
|
|
linear.load_state_dict(linear_row.state_dict())
|
|
linear_row.load_state_dict(linear.state_dict())
|
|
|
|
# check computation correctness
|
|
# [batch_size, seq_len, hidden_size]
|
|
x = torch.rand(2, 4, 32).cuda()
|
|
x_for_unshard = x.expand_as(x.clone())
|
|
x_for_unshard.requires_grad_(True)
|
|
x_for_shard = x.expand_as(x.clone())
|
|
x_for_shard.requires_grad_(True)
|
|
|
|
# run forward
|
|
out = linear(x_for_unshard)
|
|
gather_out = linear_row(x_for_shard)
|
|
target_out = out if seq_parallel_mode is None else torch.chunk(out.clone(), 2, dim=1)[dist.get_rank()]
|
|
assert_close(target_out, gather_out)
|
|
|
|
# check backward correctness
|
|
out.sum().backward()
|
|
gather_out.sum().backward()
|
|
|
|
rank = dist.get_rank()
|
|
target_grad = torch.chunk(linear.weight.grad, 2, dim=1)[rank]
|
|
assert_close(target_grad, linear_row.weight.grad)
|
|
|
|
# check the input gradients
|
|
assert x_for_shard.grad is not None
|
|
assert x_for_unshard.grad is not None
|
|
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
|
|
|
|
|
def check_linear_without_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool):
|
|
ctx = LazyInitContext() if lazy_init else nullcontext()
|
|
|
|
linear = nn.Linear(32, 128).cuda()
|
|
with ctx:
|
|
linear_copy = nn.Linear(32, 128).cuda()
|
|
linear_base = LinearWithGradAccum.from_native_module(
|
|
linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=False
|
|
)
|
|
assert linear_base.weight.shape == torch.Size([128, 32])
|
|
assert linear_base.bias.shape == torch.Size([128])
|
|
assert linear_copy.weight is linear_base.weight
|
|
assert linear_copy.bias is linear_base.bias
|
|
|
|
linear.load_state_dict(linear_base.state_dict())
|
|
linear_base.load_state_dict(linear.state_dict())
|
|
|
|
# check computation correctness
|
|
# [batch_size, seq_len, hidden_size]
|
|
x = torch.rand(2, 4, 32).cuda()
|
|
x_for_unshard = x.expand_as(x.clone())
|
|
x_for_unshard.requires_grad_(True)
|
|
x_for_shard = x.expand_as(x.clone())
|
|
x_for_shard.requires_grad_(True)
|
|
|
|
# run forward
|
|
out = linear(x_for_unshard)
|
|
gather_out = linear_base(x_for_shard)
|
|
assert_close(out, gather_out)
|
|
|
|
# check backward correctness
|
|
out.sum().backward()
|
|
gather_out.sum().backward()
|
|
assert_close(linear.weight.grad, linear_base.weight.grad)
|
|
# check the input gradients
|
|
assert x_for_shard.grad is not None
|
|
assert x_for_unshard.grad is not None
|
|
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
|
|
|
|
|
def check_linear_with_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool):
|
|
ctx = LazyInitContext() if lazy_init else nullcontext()
|
|
|
|
linear = nn.Linear(32, 128).cuda()
|
|
with ctx:
|
|
linear_copy = nn.Linear(32, 128).cuda()
|
|
linear_base = LinearWithGradAccum.from_native_module(
|
|
linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=True
|
|
)
|
|
assert linear_base.weight.shape == torch.Size([128, 32])
|
|
assert linear_base.bias.shape == torch.Size([128])
|
|
assert linear_copy.weight is linear_base.weight
|
|
assert linear_copy.bias is linear_base.bias
|
|
|
|
linear.load_state_dict(linear_base.state_dict())
|
|
linear_base.load_state_dict(linear.state_dict())
|
|
|
|
# check computation correctness
|
|
# [batch_size, seq_len, hidden_size]
|
|
x = torch.rand(2, 4, 32).cuda()
|
|
x_for_unshard = x.expand_as(x.clone())
|
|
x_for_unshard.requires_grad_(True)
|
|
x_for_shard = x.expand_as(x.clone())
|
|
x_for_shard.requires_grad_(True)
|
|
|
|
# run forward
|
|
out = linear(x_for_unshard)
|
|
gather_out = linear_base(x_for_shard)
|
|
assert_close(out, gather_out)
|
|
|
|
# check backward correctness
|
|
out.sum().backward()
|
|
gather_out.sum().backward()
|
|
|
|
# Weight grad is None before we do WeightGradStore pop
|
|
assert linear_base.weight.grad is None
|
|
# after WeightGradStore pop (dw computation complete), we assert weight grad
|
|
WeightGradStore.flush(chunk=0) # flush buffer to chunk 0 Queue
|
|
WeightGradStore.pop(chunk=0)
|
|
assert_close(linear.weight.grad, linear_base.weight.grad)
|
|
|
|
# check the input gradients
|
|
assert x_for_shard.grad is not None
|
|
assert x_for_unshard.grad is not None
|
|
assert_close(x_for_unshard.grad, x_for_shard.grad)
|
|
|
|
|
|
def check_linear_col_plus_row(lazy_init: bool, seq_parallel_mode: bool, overlap: bool):
|
|
ctx = LazyInitContext() if lazy_init else nullcontext()
|
|
|
|
linear_1 = nn.Linear(32, 128).cuda()
|
|
linear_2 = nn.Linear(128, 32).cuda()
|
|
|
|
with ctx:
|
|
linear_1_copy = nn.Linear(32, 128).cuda()
|
|
linear_2_copy = nn.Linear(128, 32).cuda()
|
|
linear_col = Linear1D_Col.from_native_module(
|
|
linear_1_copy, process_group=None, gather_output=False, seq_parallel_mode=seq_parallel_mode, overlap=overlap
|
|
)
|
|
linear_row = Linear1D_Row.from_native_module(
|
|
linear_2_copy, process_group=None, parallel_input=True, seq_parallel_mode=seq_parallel_mode
|
|
)
|
|
|
|
linear_1.load_state_dict(linear_col.state_dict())
|
|
linear_col.load_state_dict(linear_1.state_dict())
|
|
linear_2.load_state_dict(linear_row.state_dict())
|
|
linear_row.load_state_dict(linear_2.state_dict())
|
|
|
|
# check computation correctness
|
|
# [batch_size, seq_len, hidden_size]
|
|
x = torch.rand(2, 4, 32).cuda()
|
|
x_for_unshard = x.expand_as(x.clone())
|
|
x_for_unshard.requires_grad_(True)
|
|
x_for_shard = (
|
|
x.expand_as(x.clone()) if seq_parallel_mode is None else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
|
|
)
|
|
x_for_shard.requires_grad_(True)
|
|
|
|
# run forward
|
|
unshard_out = linear_2(linear_1(x_for_unshard))
|
|
shard_out = linear_row(linear_col(x_for_shard))
|
|
target_out = (
|
|
unshard_out if seq_parallel_mode is None else torch.chunk(unshard_out.clone(), 2, dim=1)[dist.get_rank()]
|
|
)
|
|
assert_close(target_out, shard_out)
|
|
|
|
# check backward correctness
|
|
unshard_out.sum().backward()
|
|
shard_out.sum().backward()
|
|
|
|
rank = dist.get_rank()
|
|
target_1_grad = torch.chunk(linear_1.weight.grad, 2, dim=0)[rank]
|
|
assert_close(target_1_grad, linear_col.weight.grad)
|
|
|
|
# check the input gradients
|
|
assert x_for_shard.grad is not None
|
|
assert x_for_unshard.grad is not None
|
|
target_unshard_gard = (
|
|
x_for_unshard.grad
|
|
if seq_parallel_mode is None
|
|
else torch.chunk(x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()]
|
|
)
|
|
assert_close(target_unshard_gard, x_for_shard.grad)
|
|
|
|
|
|
@parameterize("lazy_init", [False, True])
|
|
@parameterize("seq_parallel_mode", [None, "split_gather"])
|
|
@parameterize("overlap", [True])
|
|
def run_dist_linear_test(lazy_init, seq_parallel_mode, overlap):
|
|
check_linear_1d_col(lazy_init, seq_parallel_mode, overlap)
|
|
check_linear_1d_row(lazy_init, seq_parallel_mode)
|
|
check_linear_col_plus_row(lazy_init, seq_parallel_mode, overlap)
|
|
check_linear_without_weight_grad_store(lazy_init, seq_parallel_mode)
|
|
check_linear_with_weight_grad_store(lazy_init, seq_parallel_mode)
|
|
|
|
|
|
def check_dist_linear(rank, world_size, port):
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_dist_linear_test()
|
|
|
|
|
|
@rerun_if_address_is_in_use()
|
|
def test_linear():
|
|
spawn(check_dist_linear, nprocs=2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_linear()
|