import os from contextlib import nullcontext import torch import torch.distributed as dist import torch.nn as nn from torch.testing import assert_close import colossalai from colossalai.lazy import LazyInitContext from colossalai.pipeline.weight_grad_store import WeightGradStore from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row, LinearWithGradAccum from colossalai.tensor.d_tensor import is_distributed_tensor from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "1" def check_linear_1d_col(lazy_init: bool, seq_parallel_mode: bool, overlap: bool): ctx = LazyInitContext() if lazy_init else nullcontext() linear = nn.Linear(32, 128).cuda() with ctx: linear_copy = nn.Linear(32, 128).cuda() linear_col = Linear1D_Col.from_native_module( linear_copy, process_group=None, gather_output=True, seq_parallel_mode=seq_parallel_mode, overlap=overlap ) # ensure that the parameters are distributed assert is_distributed_tensor(linear_col.weight) assert is_distributed_tensor(linear_col.bias) assert linear_copy.weight is linear_col.weight assert linear_copy.bias is linear_col.bias # ensure the shape is correct assert linear_col.weight.shape == torch.Size([64, 32]) assert linear_col.bias.shape == torch.Size([64]) # ensure state dict is reversibly loadable linear.load_state_dict(linear_col.state_dict()) linear_col.load_state_dict(linear.state_dict()) # check computation correctness # [batch_size, seq_len, hidden_size] x = torch.rand(2, 4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = ( x.expand_as(x.clone()) if seq_parallel_mode is None else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()] ) x_for_shard.requires_grad_(True) out = linear(x_for_unshard) gather_out = linear_col(x_for_shard) assert_close(out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() rank = dist.get_rank() target_grad = torch.chunk(linear.weight.grad, 2, dim=0)[rank] assert_close(target_grad, linear_col.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None target_unshard_gard = ( x_for_unshard.grad if seq_parallel_mode is None else torch.chunk(x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()] ) assert_close(target_unshard_gard, x_for_shard.grad) def check_linear_1d_row(lazy_init: bool, seq_parallel_mode: bool): ctx = LazyInitContext() if lazy_init else nullcontext() linear = nn.Linear(32, 128).cuda() with ctx: linear_copy = nn.Linear(32, 128).cuda() linear_row = Linear1D_Row.from_native_module( linear_copy, process_group=None, parallel_input=False, seq_parallel_mode=seq_parallel_mode ) assert linear_row.weight.shape == torch.Size([128, 16]) assert linear_row.bias.shape == torch.Size([128]) assert linear_copy.weight is linear_row.weight assert linear_copy.bias is linear_row.bias linear.load_state_dict(linear_row.state_dict()) linear_row.load_state_dict(linear.state_dict()) # check computation correctness # [batch_size, seq_len, hidden_size] x = torch.rand(2, 4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = x.expand_as(x.clone()) x_for_shard.requires_grad_(True) # run forward out = linear(x_for_unshard) gather_out = linear_row(x_for_shard) target_out = out if seq_parallel_mode is None else torch.chunk(out.clone(), 2, dim=1)[dist.get_rank()] assert_close(target_out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() rank = dist.get_rank() target_grad = torch.chunk(linear.weight.grad, 2, dim=1)[rank] assert_close(target_grad, linear_row.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None assert_close(x_for_unshard.grad, x_for_shard.grad) def check_linear_without_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool): ctx = LazyInitContext() if lazy_init else nullcontext() linear = nn.Linear(32, 128).cuda() with ctx: linear_copy = nn.Linear(32, 128).cuda() linear_base = LinearWithGradAccum.from_native_module( linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=False ) assert linear_base.weight.shape == torch.Size([128, 32]) assert linear_base.bias.shape == torch.Size([128]) assert linear_copy.weight is linear_base.weight assert linear_copy.bias is linear_base.bias linear.load_state_dict(linear_base.state_dict()) linear_base.load_state_dict(linear.state_dict()) # check computation correctness # [batch_size, seq_len, hidden_size] x = torch.rand(2, 4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = x.expand_as(x.clone()) x_for_shard.requires_grad_(True) # run forward out = linear(x_for_unshard) gather_out = linear_base(x_for_shard) assert_close(out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() assert_close(linear.weight.grad, linear_base.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None assert_close(x_for_unshard.grad, x_for_shard.grad) def check_linear_with_weight_grad_store(lazy_init: bool, seq_parallel_mode: bool): ctx = LazyInitContext() if lazy_init else nullcontext() linear = nn.Linear(32, 128).cuda() with ctx: linear_copy = nn.Linear(32, 128).cuda() linear_base = LinearWithGradAccum.from_native_module( linear_copy, parallel_input=False, seq_parallel_mode=seq_parallel_mode, use_zbv=True ) assert linear_base.weight.shape == torch.Size([128, 32]) assert linear_base.bias.shape == torch.Size([128]) assert linear_copy.weight is linear_base.weight assert linear_copy.bias is linear_base.bias linear.load_state_dict(linear_base.state_dict()) linear_base.load_state_dict(linear.state_dict()) # check computation correctness # [batch_size, seq_len, hidden_size] x = torch.rand(2, 4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = x.expand_as(x.clone()) x_for_shard.requires_grad_(True) # run forward out = linear(x_for_unshard) gather_out = linear_base(x_for_shard) assert_close(out, gather_out) # check backward correctness out.sum().backward() gather_out.sum().backward() # Weight grad is None before we do WeightGradStore pop assert linear_base.weight.grad is None # after WeightGradStore pop (dw computation complete), we assert weight grad WeightGradStore.flush(chunk=0) # flush buffer to chunk 0 Queue WeightGradStore.pop(chunk=0) assert_close(linear.weight.grad, linear_base.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None assert_close(x_for_unshard.grad, x_for_shard.grad) def check_linear_col_plus_row(lazy_init: bool, seq_parallel_mode: bool, overlap: bool): ctx = LazyInitContext() if lazy_init else nullcontext() linear_1 = nn.Linear(32, 128).cuda() linear_2 = nn.Linear(128, 32).cuda() with ctx: linear_1_copy = nn.Linear(32, 128).cuda() linear_2_copy = nn.Linear(128, 32).cuda() linear_col = Linear1D_Col.from_native_module( linear_1_copy, process_group=None, gather_output=False, seq_parallel_mode=seq_parallel_mode, overlap=overlap ) linear_row = Linear1D_Row.from_native_module( linear_2_copy, process_group=None, parallel_input=True, seq_parallel_mode=seq_parallel_mode ) linear_1.load_state_dict(linear_col.state_dict()) linear_col.load_state_dict(linear_1.state_dict()) linear_2.load_state_dict(linear_row.state_dict()) linear_row.load_state_dict(linear_2.state_dict()) # check computation correctness # [batch_size, seq_len, hidden_size] x = torch.rand(2, 4, 32).cuda() x_for_unshard = x.expand_as(x.clone()) x_for_unshard.requires_grad_(True) x_for_shard = ( x.expand_as(x.clone()) if seq_parallel_mode is None else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()] ) x_for_shard.requires_grad_(True) # run forward unshard_out = linear_2(linear_1(x_for_unshard)) shard_out = linear_row(linear_col(x_for_shard)) target_out = ( unshard_out if seq_parallel_mode is None else torch.chunk(unshard_out.clone(), 2, dim=1)[dist.get_rank()] ) assert_close(target_out, shard_out) # check backward correctness unshard_out.sum().backward() shard_out.sum().backward() rank = dist.get_rank() target_1_grad = torch.chunk(linear_1.weight.grad, 2, dim=0)[rank] assert_close(target_1_grad, linear_col.weight.grad) # check the input gradients assert x_for_shard.grad is not None assert x_for_unshard.grad is not None target_unshard_gard = ( x_for_unshard.grad if seq_parallel_mode is None else torch.chunk(x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()] ) assert_close(target_unshard_gard, x_for_shard.grad) @parameterize("lazy_init", [False, True]) @parameterize("seq_parallel_mode", [None, "split_gather"]) @parameterize("overlap", [True]) def run_dist_linear_test(lazy_init, seq_parallel_mode, overlap): check_linear_1d_col(lazy_init, seq_parallel_mode, overlap) check_linear_1d_row(lazy_init, seq_parallel_mode) check_linear_col_plus_row(lazy_init, seq_parallel_mode, overlap) check_linear_without_weight_grad_store(lazy_init, seq_parallel_mode) check_linear_with_weight_grad_store(lazy_init, seq_parallel_mode) def check_dist_linear(rank, world_size, port): colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_dist_linear_test() @rerun_if_address_is_in_use() def test_linear(): spawn(check_dist_linear, nprocs=2) if __name__ == "__main__": test_linear()