- [BLOOM](https://github.com/hpcaitech/EnergonAI/tree/main/examples/bloom): Reduce hardware deployment costs of 175-billion-parameter BLOOM by more than 10 times.
<palign="right">(<ahref="#top">back to top</a>)</p>
## Colossal-AI in the Real World
### AIGC
Acceleration of AIGC (AI-Generated Content) models such as [Stable Diffusion](https://github.com/CompVis/stable-diffusion)
Acceleration of AIGC (AI-Generated Content) models such as [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion) and [Stable Diffusion v2](https://github.com/Stability-AI/stablediffusion).
- [Stable Diffusion with Colossal-AI](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion): 6.5x faster training and pretraining cost saving, the hardware cost of fine-tuning can be almost 7X cheaper (from RTX3090/4090 to RTX3050/2070)
- [Training](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion): Reduce Stable Diffusion memory consumption by up to 5.6x and hardware cost by up to 46x (from A100 to RTX3060).
- [DreamBooth Fine-tuning](https://github.com/hpcaitech/ColossalAI/tree/hotfix/doc/examples/images/dreambooth): Personalize your model using just 3-5 images of the desired subject.