[autoparallel] introduced baseclass for op handler and reduced code redundancy (#1471)

* [autoparallel] introduced baseclass for op handler and reduced code redundancy

* polish code
pull/1472/head
Frank Lee 2 years ago committed by GitHub
parent 3a54e1c9b7
commit 9dae9bb2bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,35 +1,19 @@
from lib2to3.pytree import Base
import operator
from functools import reduce
import torch
from colossalai.tensor.sharding_spec import ShardingSpec
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHanlder
class ConvHandler:
'''
The ConvHandler is used to generate every possible strategies for a Conv node.
Argument:
input_node(Node): the input node in conv node argument list.
input_index(int): the index of input node in the conv node argument list.
weight(torch.Tensor): Weight of the conv node.
output_node(Node): Output_node is the output of the conv node.
device_mesh(DeviceMesh): A logical view of a physical mesh.
strategies_vector(StrategiesVector): all the strategies generated in this handler will be recorded into the strategies_vector.
shape_consistency_manager(ShapeConsistencyManager): ShapeConsistencyManager will give the resharding costs of the different sharding specs.
'''
class ConvHandler(OperatorHanlder):
"""
A OperatorHandler which deals with the sharding strategies of linear matrix multiplication.
"""
def __init__(self, input_node, input_index, weight, output_node, device_mesh, strategies_vector,
shape_consistency_manager):
self.input_node = input_node
self.input_data = self.input_node._meta_data
self.weight = weight
self.input_index = input_index
self.output_node = output_node
self.output = self.output_node._meta_data
self.device_mesh = device_mesh
self.strategies_vector = strategies_vector
self.shape_consistency_manager = shape_consistency_manager
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._sanity_check()
def _sanity_check(self):
@ -42,36 +26,6 @@ class ConvHandler:
assert self.input_data.dim() in (3, 4,
5), f'We suppose the dim of input fed into conv op should in range of [3, 5].'
def _generate_sharding_spec_for_input(self, dim_partition_dict_for_input):
'''
Generate sharding spec for the input node.
'''
entire_shape_for_input = self.input_data.shape
sharding_spec_for_input = ShardingSpec(device_mesh=self.device_mesh,
entire_shape=entire_shape_for_input,
dim_partition_dict=dim_partition_dict_for_input)
return sharding_spec_for_input
def _generate_sharding_spec_for_weight(self, dim_partition_dict_for_weight):
'''
Generate sharding spec for the weight.
'''
entire_shape_for_weight = self.weight.shape
sharding_spec_for_weight = ShardingSpec(device_mesh=self.device_mesh,
entire_shape=entire_shape_for_weight,
dim_partition_dict=dim_partition_dict_for_weight)
return sharding_spec_for_weight
def _generate_sharding_spec_for_output(self, dim_partition_dict_for_output):
'''
Generate sharding spec for the output node.
'''
entire_shape_for_output = self.output.shape
sharding_spec_for_output = ShardingSpec(device_mesh=self.device_mesh,
entire_shape=entire_shape_for_output,
dim_partition_dict=dim_partition_dict_for_output)
return sharding_spec_for_output
def _generate_resharding_costs(self, resharding_costs, sharding_spec_for_input):
'''
Compute the resharding costs with this specific strategy.
@ -120,13 +74,13 @@ class ConvHandler:
name = f'S{mesh_dim_0}S{mesh_dim_1} = S{mesh_dim_0}R x RS{mesh_dim_1}'
dim_partition_dict_for_input = {0: [mesh_dim_0]}
sharding_spec_for_input = self._generate_sharding_spec_for_input(dim_partition_dict_for_input)
sharding_spec_for_input = self._generate_sharding_spec(self.input_data, dim_partition_dict_for_input)
dim_partition_dict_for_weight = {1: [mesh_dim_1]}
sharding_spec_for_weight = self._generate_sharding_spec_for_weight(dim_partition_dict_for_weight)
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_ouput = self._generate_sharding_spec_for_output(dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
@ -160,13 +114,13 @@ class ConvHandler:
name = f'S{mesh_dim_0}R = S{mesh_dim_0}S{mesh_dim_1} x S{mesh_dim_1}R'
dim_partition_dict_for_input = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_input = self._generate_sharding_spec_for_input(dim_partition_dict_for_input)
sharding_spec_for_input = self._generate_sharding_spec(self.input_data, dim_partition_dict_for_input)
dim_partition_dict_for_weight = {0: [mesh_dim_0]}
sharding_spec_for_weight = self._generate_sharding_spec_for_weight(dim_partition_dict_for_weight)
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0]}
sharding_spec_for_ouput = self._generate_sharding_spec_for_output(dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
@ -200,13 +154,13 @@ class ConvHandler:
name = f'RS{mesh_dim_1} = RS{mesh_dim_0} x S{mesh_dim_0}S{mesh_dim_1}'
dim_partition_dict_for_input = {1: [mesh_dim_0]}
sharding_spec_for_input = self._generate_sharding_spec_for_input(dim_partition_dict_for_input)
sharding_spec_for_input = self._generate_sharding_spec(self.input_data, dim_partition_dict_for_input)
dim_partition_dict_for_weight = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_weight = self._generate_sharding_spec_for_weight(dim_partition_dict_for_weight)
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_1]}
sharding_spec_for_ouput = self._generate_sharding_spec_for_output(dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
@ -240,13 +194,13 @@ class ConvHandler:
name = f'RS{mesh_dim_0} = RR x RS{mesh_dim_0}'
dim_partition_dict_for_input = {}
sharding_spec_for_input = self._generate_sharding_spec_for_input(dim_partition_dict_for_input)
sharding_spec_for_input = self._generate_sharding_spec(self.input_data, dim_partition_dict_for_input)
dim_partition_dict_for_weight = {1: [mesh_dim_0]}
sharding_spec_for_weight = self._generate_sharding_spec_for_weight(dim_partition_dict_for_weight)
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_0]}
sharding_spec_for_ouput = self._generate_sharding_spec_for_output(dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}
@ -281,13 +235,13 @@ class ConvHandler:
name = f'RR = RR x RR'
dim_partition_dict_for_input = {}
sharding_spec_for_input = self._generate_sharding_spec_for_input(dim_partition_dict_for_input)
sharding_spec_for_input = self._generate_sharding_spec(self.input_data, dim_partition_dict_for_input)
dim_partition_dict_for_weight = {}
sharding_spec_for_weight = self._generate_sharding_spec_for_weight(dim_partition_dict_for_weight)
sharding_spec_for_weight = self._generate_sharding_spec(self.weight, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {}
sharding_spec_for_ouput = self._generate_sharding_spec_for_output(dim_partition_dict_for_output)
sharding_spec_for_ouput = self._generate_sharding_spec(self.output, dim_partition_dict_for_input)
# generate resharding cost for this strategy
resharding_costs = {}

@ -0,0 +1,12 @@
from .operator_handler import OperatorHanlder
class DotHandler(OperatorHanlder):
"""
A OperatorHandler which deals with the sharding strategies of linear matrix multiplication.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: refactor the dot handler in my local branch to align with the latest main branch

@ -0,0 +1,45 @@
from abc import ABC, abstractmethod
from torch.fx.node import Node
import torch.nn as nn
from colossalai.device.device_mesh import DeviceMesh
from .sharding_strategy import StrategiesVector
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
class OperatorHanlder(ABC):
'''
The OperatorHanlder is an abstract class used to generate every possible strategies for a operator node.
Argument:
input_node(Node): the input node in node argument list.
input_index(int): the index of input node in the node argument list.
weight(torch.Tensor): Weight of the node.
output_node(Node): Output_node is the output of the node.
device_mesh(DeviceMesh): A logical view of a physical mesh.
strategies_vector(StrategiesVector): all the strategies generated in this handler will be recorded into the strategies_vector.
shape_consistency_manager(ShapeConsistencyManager): ShapeConsistencyManager will give the resharding costs of the different sharding specs.
'''
def __init__(self, input_node: Node, input_index: int, weight: nn.Parameter, output_node: Node,
device_mesh: DeviceMesh, strategies_vector: StrategiesVector,
shape_consistency_manager: ShapeConsistencyManager):
self.input_node = input_node
self.input_data = self.input_node._meta_data
self.weight = weight
self.input_index = input_index
self.output_node = output_node
self.output = self.output_node._meta_data
self.device_mesh = device_mesh
self.strategies_vector = strategies_vector
self.shape_consistency_manager = shape_consistency_manager
@abstractmethod
def register_strategy_into_strategies_vector(self):
pass
def _generate_sharding_spec(self, tensor, dim_partition_dict):
sharding_spec = ShardingSpec(device_mesh=self.device_mesh,
entire_shape=tensor.shape,
dim_partition_dict=dim_partition_dict)
return sharding_spec
Loading…
Cancel
Save