mirror of https://github.com/hpcaitech/ColossalAI
46 lines
2.1 KiB
Python
46 lines
2.1 KiB
Python
from abc import ABC, abstractmethod
|
|
from torch.fx.node import Node
|
|
import torch.nn as nn
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from .sharding_strategy import StrategiesVector
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
|
|
class OperatorHanlder(ABC):
|
|
'''
|
|
The OperatorHanlder is an abstract class used to generate every possible strategies for a operator node.
|
|
|
|
Argument:
|
|
input_node(Node): the input node in node argument list.
|
|
input_index(int): the index of input node in the node argument list.
|
|
weight(torch.Tensor): Weight of the node.
|
|
output_node(Node): Output_node is the output of the node.
|
|
device_mesh(DeviceMesh): A logical view of a physical mesh.
|
|
strategies_vector(StrategiesVector): all the strategies generated in this handler will be recorded into the strategies_vector.
|
|
shape_consistency_manager(ShapeConsistencyManager): ShapeConsistencyManager will give the resharding costs of the different sharding specs.
|
|
'''
|
|
|
|
def __init__(self, input_node: Node, input_index: int, weight: nn.Parameter, output_node: Node,
|
|
device_mesh: DeviceMesh, strategies_vector: StrategiesVector,
|
|
shape_consistency_manager: ShapeConsistencyManager):
|
|
self.input_node = input_node
|
|
self.input_data = self.input_node._meta_data
|
|
self.weight = weight
|
|
self.input_index = input_index
|
|
self.output_node = output_node
|
|
self.output = self.output_node._meta_data
|
|
self.device_mesh = device_mesh
|
|
self.strategies_vector = strategies_vector
|
|
self.shape_consistency_manager = shape_consistency_manager
|
|
|
|
@abstractmethod
|
|
def register_strategy_into_strategies_vector(self):
|
|
pass
|
|
|
|
def _generate_sharding_spec(self, tensor, dim_partition_dict):
|
|
sharding_spec = ShardingSpec(device_mesh=self.device_mesh,
|
|
entire_shape=tensor.shape,
|
|
dim_partition_dict=dim_partition_dict)
|
|
return sharding_spec
|