[Inference]Adapted to the triton attn kernels (#5264)

* adapted to the triton attn kernels

* fix pad input

* adapted to copy_kv_to_blocked_cache

* fix ci test

* update kv memcpy

* remove print
pull/5270/head
yuehuayingxueluo 2024-01-17 16:03:10 +08:00 committed by GitHub
parent 0f2b46a41c
commit 86b63f720c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 221 additions and 101 deletions

View File

@ -236,6 +236,7 @@ class InferenceEngine:
output_list = []
batch = self.request_handler.schedule()
# TODO: padding_id is used for generating attn_mask and will be removed if nopad version is supported.
logits = self.model(
batch,
self.k_cahce,

View File

@ -57,9 +57,6 @@ class RunningList:
def is_empty(self):
return not self.decoding and not self.prefill
def total_seq_num(self):
return len(self.decoding) + len(self.prefill)
class RequestHandler:
"""
@ -81,6 +78,7 @@ class RequestHandler:
device = torch.cuda.current_device()
self.running_batch = BatchInfo(is_prompts=False, device=device)
self.prefill_batch = BatchInfo(is_prompts=True, device=device)
self.max_batch_size = inference_config.max_batch_size
def _init_cache(self, model_config):
self.cache_manager = KVCacheManager(self.inference_config, model_config)
@ -108,20 +106,18 @@ class RequestHandler:
)
self.abort_sequence(seq.request_id)
break
# stop feeding new sequence into running list to assure
if self.cache_manager.num_available_blocks <= self.running_list.total_seq_num:
break
# Try to allocate cache blocks for the sequence.
if self.cache_manager.check_allocation(seq):
if (
self.cache_manager.check_allocation(seq)
and (len(self.running_list.prefill) + len(self.running_list.decoding))
< self.max_batch_size # There some bugs in continous batching, so we disable it here.
):
# If succeed, add the sequence to running list.
remove_list.append(seq)
self.running_list.append(seq)
self.cache_manager.allocate_context_from_block_table(seq.block_table, seq.input_len)
for seq in remove_list:
lst.remove(seq)
if self.running_list.ready_for_prefill():
for seq in self.running_list.prefill:
seq.mark_running()
@ -130,12 +126,7 @@ class RequestHandler:
if not self.running_batch.is_empty:
for seq in self.running_batch.sequences_set:
recycle = self.cache_manager.allocate_token_from_block_table(seq.block_table, seq.sentence_len)
if recycle:
seq.recycle()
self.running_batch.remove(seq)
self.waiting_list[-1].append(seq)
# the recycled sequences are handled with highest priority.
self.cache_manager.allocate_token_from_block_table(seq.block_table, seq.sentence_len)
return self.running_batch

View File

@ -6,6 +6,7 @@ import torch.nn.functional as F
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
@torch.no_grad
def copy_to_cache(source, cache, lengths, block_tables, type: str = "prefill"):
"""
Func: copy key/value into key/value cache.
@ -40,6 +41,7 @@ def copy_to_cache(source, cache, lengths, block_tables, type: str = "prefill"):
return cache
@torch.no_grad
def convert_kvcache(cache, lengths, block_tables, pad_id=0):
"""
Func: convert key/value cache for calculation
@ -79,6 +81,7 @@ class PagedAttention:
"""
@staticmethod
@torch.no_grad
def pad_and_reshape(tensor, seq_lengths, max_seq_len, num_heads, head_size):
"""
Transform 1D no_pad tensor into 2D padded tensor with shape [bsz,seq_len,num_heads,head_size]
@ -94,12 +97,14 @@ class PagedAttention:
return padded_tensor
@staticmethod
@torch.no_grad
def generate_padding_mask(lengths, max_seq_len):
range_tensor = torch.arange(max_seq_len).expand(len(lengths), max_seq_len)
padding_mask = range_tensor < lengths.unsqueeze(1)
return padding_mask
@staticmethod
@torch.no_grad
def repeat_kv(hidden_states: torch.Tensor, n_rep: int = 1) -> torch.Tensor:
"""
Essential component for MQA. Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
@ -117,6 +122,7 @@ class PagedAttention:
return hidden_states.reshape(batch, num_attention_heads, seq_len, head_dim)
@staticmethod
@torch.no_grad
def nopad_context_forward(
q: torch.Tensor, # [num_tokens, num_heads, head_size]
k: torch.Tensor, # [num_tokens, num_kv_heads, head_size]
@ -185,6 +191,7 @@ class PagedAttention:
return attn_output
@staticmethod
@torch.no_grad
def pad_context_forward(
q: torch.Tensor, # [batch_size, seq_len, num_heads, head_size]
k: torch.Tensor, # [batch_size, seq_len, num_kv_heads, head_size]
@ -239,11 +246,10 @@ class PagedAttention:
attn_output = attn_output.transpose(1, 2).contiguous().reshape(bsz, seq_len, -1)
del attn_weights
return attn_output
@staticmethod
@torch.no_grad
def pad_decoding_forward(
q: torch.Tensor, # [bsz, 1, num_heads, head_size]
k: torch.Tensor, # [bsz, 1, num_kv_heads, head_size]
@ -297,11 +303,10 @@ class PagedAttention:
raise ValueError(f"Got wrong attn_output, should be in shape {(bsz,num_heads,1,head_size)}.")
attn_output = attn_output.transpose(1, 2).contiguous().reshape(bsz, 1, -1)
del attn_weights
return attn_output
@staticmethod
@torch.no_grad
def no_pad_decoding_forward(
self,
q: torch.Tensor, # [num_tokens, num_heads, head_size]

View File

@ -2,19 +2,23 @@
from typing import List, Optional, Tuple
import torch
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
repeat_kv,
)
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel
from colossalai.inference.modeling.layers.attention import PagedAttention
from colossalai.inference.struct import BatchInfo
from colossalai.kernel.triton import context_attention_unpadded, copy_kv_to_blocked_cache, flash_decoding_fwd
from colossalai.logging import get_dist_logger
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
logger = get_dist_logger(__name__)
try:
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.")
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
@ -35,6 +39,7 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
return q_embed, k_embed
@torch.no_grad()
def llama_causal_lm_forward(
self: LlamaForCausalLM,
batch: BatchInfo = None,
@ -54,6 +59,7 @@ def llama_causal_lm_forward(
return logits
@torch.no_grad()
def llama_model_forward(
self: LlamaModel,
batch: BatchInfo = None,
@ -63,15 +69,30 @@ def llama_model_forward(
):
input_ids = batch.get_batch_inputs()
block_tables = batch.get_block_table_tensor()
sequence_lengths = batch.get_sequence_lengths()
attention_mask = batch.get_attn_mask(padding_id)
if batch.is_prompts:
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
position_ids = generate_padding_position_id(attention_mask)
if attention_mask is not None:
# TODO After the nopad version is implemented, we will use the following code to get sequence_lengths.
# sequence_lengths = batch.get_sequence_lengths()
sequence_lengths = attention_mask.sum(dim=-1, dtype=torch.int32)
else:
position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1)
sequence_lengths = batch.get_sequence_lengths()
kv_seq_len = sequence_lengths.max().item()
if attention_mask is not None:
if batch.is_prompts:
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
position_ids = generate_padding_position_id(attention_mask)
else:
position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1)
else:
if batch.is_prompts:
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=batch.device)
position_ids = position_ids.unsqueeze(0)
else:
position_ids = torch.arange(kv_seq_len - 1, kv_seq_len, dtype=torch.long, device=batch.device)
position_ids = position_ids.unsqueeze(0)
hidden_states = self.embed_tokens(input_ids)
@ -85,13 +106,14 @@ def llama_model_forward(
is_prompts=batch.is_prompts,
sequence_lengths=sequence_lengths,
attention_mask=attention_mask,
kv_seq_len=kv_seq_len,
)
hidden_states = self.norm(hidden_states)
return hidden_states
@torch.no_grad()
def llama_decoder_layer_forward(
self: LlamaDecoderLayer,
hidden_states: torch.Tensor,
@ -102,6 +124,7 @@ def llama_decoder_layer_forward(
is_prompts: bool = True,
sequence_lengths: int = None,
attention_mask: torch.Tensor = None,
kv_seq_len: int = 0,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
@ -116,6 +139,7 @@ def llama_decoder_layer_forward(
is_prompts=is_prompts,
sequence_lengths=sequence_lengths,
attention_mask=attention_mask,
kv_seq_len=kv_seq_len,
)
hidden_states = residual + hidden_states
@ -130,6 +154,7 @@ def llama_decoder_layer_forward(
# Replace transformers.models.llama.modeling_llama.LlamaAttention.forward
@torch.no_grad()
def llama_attn_forward(
self: LlamaAttention,
hidden_states: torch.Tensor,
@ -140,6 +165,7 @@ def llama_attn_forward(
is_prompts: bool = True,
sequence_lengths: torch.Tensor = None,
attention_mask: torch.Tensor = None,
kv_seq_len: int = 0,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
@ -147,26 +173,44 @@ def llama_attn_forward(
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = sequence_lengths[0].item()
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
_, _, _, block_size = k_cache.shape
if is_prompts:
attn_output = PagedAttention.pad_context_forward(
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask
)
if HAS_TRITON:
if attention_mask is not None:
query_states, key_states, value_states, indices = unpading_input(
query_states, key_states, value_states, attention_mask
)
else:
query_states = query_states.view(-1, self.num_heads, self.head_dim)
key_states = key_states.view(-1, self.num_heads, self.head_dim)
value_states = value_states.view(-1, self.num_heads, self.head_dim)
attn_output = context_attention_unpadded(
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size
)
if attention_mask is not None:
attn_output = pad_input(attn_output, indices, bsz, q_len)
else:
attn_output = PagedAttention.pad_context_forward(
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask
)
else:
attn_output = PagedAttention.pad_decoding_forward(
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask
)
if HAS_TRITON:
copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
attn_output = flash_decoding_fwd(query_states, k_cache, v_cache, sequence_lengths, block_tables, block_size)
else:
attn_output = PagedAttention.pad_decoding_forward(
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask
)
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
@ -175,7 +219,18 @@ def llama_attn_forward(
return attn_output
@torch.no_grad()
def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
return position_ids
@torch.no_grad()
def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor):
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape
q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
return (q, k, v, indices)

View File

@ -332,12 +332,20 @@ class BatchInfo:
return torch.tensor(len_list, dtype=torch.int, device=self.device)
def get_attn_mask(self, padding_id: int) -> torch.Tensor:
"""
Generate and return attention mask.
"""
past_values = []
for seq in self.sequences_set:
past_values.append(seq.input_token_id + seq.output_token_id)
return torch.tensor(past_values, dtype=torch.int, device=self.device).ne(padding_id).long()
attn_mask = torch.tensor(past_values, dtype=torch.int, device=self.device).ne(padding_id).long()
if torch.any(attn_mask == 0):
return attn_mask
else:
return None
def __repr__(self) -> str:
return f"(sequences_set={self.sequences_set}, " f"is_prompts={self.is_prompts})"

View File

@ -1,13 +1,16 @@
import argparse
import time
from contextlib import nullcontext
import torch
import torch.distributed as dist
import transformers
from transformers import AutoTokenizer, GenerationConfig
import colossalai
import colossalai.utils.device as device_utils
from colossalai.inference import InferenceEngine
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.utils.device import get_current_device
@ -53,36 +56,14 @@ CONFIG_MAP = {
def data_gen(batch_size: int = 4, seq_len: int = 512):
input_ids = torch.randint(10, 30000, (batch_size, seq_len), device=get_current_device())
attention_mask = torch.ones_like(input_ids)
data = dict(input_ids=input_ids, attention_mask=attention_mask)
return data
return input_ids
def print_details_info(outputs, model_config, args, whole_end2end):
def print_details_info(model_config, args, whole_end2end):
msg: str = ""
if dist.get_rank() == 0:
msg += "-------Perf Summary-------\n"
if args.verbose:
timestamps = outputs[1]
prefill = []
encoder = []
end2end = []
for timestamp in timestamps:
prefill.append(timestamp[1] - timestamp[0])
encoder.append(
sum(timestamp[i + 1] - timestamp[i] for i in range(1, len(timestamp) - 1)) / (len(timestamp) - 2)
)
end2end.append(timestamp[-1] - timestamp[0])
mb_avg_end2end = sum(end2end) / len(end2end)
mb_avg_latency = mb_avg_end2end / (args.output_len * args.mb_size)
msg += f"Average prefill time: {sum(prefill) / len(prefill) * 1000:.2f} ms\n"
msg += f"Average encode time: {sum(encoder) / len(encoder) * 1000:.2f} ms\n"
msg += f"Average micro batch end2end time: {mb_avg_end2end * 1000:.2f} ms\n"
msg += f"Average micro batch per token latency: {mb_avg_latency * 1000:.2f} ms\n"
whole_avg_latency = whole_end2end / (args.output_len * args.batch_size)
num_layers = getattr(model_config, "num_layers", model_config.num_hidden_layers)
num_parameters = num_layers * model_config.hidden_size * model_config.hidden_size * 12 / args.pp_size
@ -105,35 +86,87 @@ def print_details_info(outputs, model_config, args, whole_end2end):
def benchmark_inference(args):
config = CONFIG_MAP[args.model]
model = transformers.LlamaForCausalLM(config)
if dist.get_rank() == 0:
print("Model loaded")
engine = InferenceEngine(
pp_size=args.pp_size,
tp_size=args.tp_size,
dtype=args.dtype,
micro_batch_size=args.mb_size,
model=model,
verbose=args.verbose,
max_batch_size=args.batch_size,
max_input_len=args.seq_len,
max_output_len=args.output_len,
)
data = data_gen(args.batch_size, args.seq_len)
with torch.no_grad():
config = CONFIG_MAP[args.model]
config.pad_token_id = config.eos_token_id
model = transformers.LlamaForCausalLM(config).cuda()
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained("/home/caidi/llama_model/")
N_WARMUP_STEPS = 2
if args.dtype == "fp16":
model = model.half()
elif args.dtype == "bf16":
model = model.to(torch.bfloat16)
for _ in range(N_WARMUP_STEPS):
engine.generate(data)
# mbsz = args.mbsz
mbsz = args.batch_size
if args.mode == "caiinference":
inference_config = InferenceConfig(
dtype=args.dtype,
micro_batch_size=args.mb_size,
max_batch_size=mbsz,
max_input_len=args.seq_len,
max_output_len=args.output_len,
prefill_ratio=1.2,
)
engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
else:
engine = model
torch.cuda.synchronize()
whole_end2end = time.time()
outputs = engine.generate(data)
torch.cuda.synchronize()
whole_end2end = time.time() - whole_end2end
data = data_gen(mbsz, args.seq_len)
generation_config = GenerationConfig(
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=args.output_len,
)
print_details_info(outputs, model.config, args, whole_end2end)
N_WARMUP_STEPS = 2
ctx = (
torch.profiler.profile(
record_shapes=True,
with_stack=True,
with_modules=True,
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(wait=0, warmup=N_WARMUP_STEPS, active=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler("./tb_log_" + args.mode),
)
if args.profile
else nullcontext()
)
with ctx:
for _ in range(N_WARMUP_STEPS):
if args.mode == "caiinference":
engine.add_request(prompts_token_ids=data)
engine.generate(generation_config)
else:
engine.generate(data, generation_config=generation_config)
if args.profile:
ctx.step()
if args.nsys:
torch.cuda.cudart().cudaProfilerStart()
torch.cuda.synchronize()
whole_end2end = time.perf_counter()
if args.mode == "caiinference":
for _ in range(args.batch_size // mbsz):
engine.add_request(prompts_token_ids=data)
engine.generate(generation_config)
else:
for _ in range(args.batch_size // mbsz):
engine.generate(data, generation_config=generation_config)
whole_end2end = time.perf_counter() - whole_end2end
if args.nsys:
torch.cuda.cudart().cudaProfilerStop()
if args.profile:
ctx.step()
print_details_info(model.config, args, whole_end2end)
def hybrid_inference(rank, world_size, port, args):
@ -157,12 +190,21 @@ if __name__ == "__main__":
choices=["toy", "llama-7b", "llama-13b", "llama2-7b", "llama2-13b"],
)
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size")
parser.add_argument("-s", "--seq_len", type=int, default=8, help="sequence length")
parser.add_argument("--mbsz", type=int, default=8, help="batch size for one step")
parser.add_argument("-s", "--seq_len", type=int, default=8, help="input sequence length")
parser.add_argument("--mb_size", type=int, default=1, help="micro_batch_size")
parser.add_argument("--pp_size", type=int, default=1, help="pipeline size")
parser.add_argument("--tp_size", type=int, default=1, help="pipeline size")
parser.add_argument("--output_len", type=int, default=128, help="Output length")
parser.add_argument("--dtype", type=str, default="fp16", help="data type")
parser.add_argument("--dtype", type=str, default="fp16", help="data type", choices=["fp16", "fp32", "bf16"])
parser.add_argument("-v", "--verbose", default=False, action="store_true")
parser.add_argument("--profile", default=False, action="store_true", help="enable torch profiler")
parser.add_argument("--nsys", default=False, action="store_true", help="enable nsys profiler")
parser.add_argument(
"--mode",
default="caiinference",
choices=["caiinference", "transformers"],
help="decide which inference framework to run",
)
args = parser.parse_args()
benchmark(args)

View File

@ -1,15 +1,33 @@
ROOT=$(realpath $(dirname $0))
PY_SCRIPT=${ROOT}/benchmark_llama.py
GPU=$(nvidia-smi -L | head -1 | cut -d' ' -f4 | cut -d'-' -f1)
mode=$1
mkdir -p logs
CUDA_VISIBLE_DEVICES_set_n_least_memory_usage() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv \
| tail -n +2 \
| nl -v 0 \
| tee /dev/tty \
| sort -g -k 2 \
| awk '{print $1}' \
| head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
CUDA_VISIBLE_DEVICES_set_n_least_memory_usage 1
# benchmark llama2-7b one single GPU
for bsz in 16 32 64; do
python3 ${PY_SCRIPT} -m llama2-7b --tp_size 1 --pp_size 1 -b $bsz -s 256 --output_len 128 | tee logs/${GPU}_${bsz}_256.txt
python3 ${PY_SCRIPT} -m llama2-7b --tp_size 1 --pp_size 1 -b $bsz -s 256 --output_len 128 --mode ${mode} | tee logs/${mode}_${GPU}_${bsz}_256.txt
done
for bsz in 4 8 16 32 64; do
python3 ${PY_SCRIPT} -m llama2-7b --tp_size 1 --pp_size 1 -b $bsz -s 1024 --output_len 128 | tee logs/${GPU}_${bsz}_1024.txt
for bsz in 16 32 64; do
python3 ${PY_SCRIPT} -m llama2-7b --tp_size 1 --pp_size 1 -b $bsz -s 1024 --output_len 128 --mode ${mode} | tee logs/${mode}_${GPU}_${bsz}_1024.txt
done