[kernel] Revise KVCache copy triton kernel API (#5273)

* [kernel/fix] revise kvcache copy kernel api

* fix benchmark
pull/5264/head
Yuanheng Zhao 2024-01-16 14:41:02 +08:00 committed by GitHub
parent d8db500efc
commit 0f2b46a41c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 43 additions and 34 deletions

View File

@ -25,11 +25,11 @@ def _copy_to_kvcache_seqlen1_kernel(
cur_seq_idx = tl.program_id(0)
cur_kv_head_idx = tl.program_id(1)
cur_kv_seq_len = tl.load(context_lengths + cur_seq_idx)
last_bt_block_idx = cur_kv_seq_len // block_size
past_kv_seq_len = tl.load(context_lengths + cur_seq_idx) - 1
last_bt_block_idx = past_kv_seq_len // block_size
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
block_id = tl.load(block_table_ptr + last_bt_block_idx * stride_btb)
offsets_in_last_block = (cur_kv_seq_len % block_size) * stride_cachebs
offsets_in_last_block = (past_kv_seq_len % block_size) * stride_cachebs
offsets_dmodel = tl.arange(0, HEAD_DIM)
offsets_kv = cur_seq_idx * stride_kt + cur_kv_head_idx * stride_kh + offsets_dmodel * stride_kd
kv = tl.load(KV + offsets_kv)
@ -43,23 +43,30 @@ def _copy_to_kvcache_seqlen1_kernel(
return
# Used with blocked kv cache.
# Copy k or v to block k/v cache during decoding stage
def copy_kv_to_blocked_cache(
k: torch.Tensor, # [bsz, 1, num_kv_heads, head_dim], k or v during decoding stage
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size], blocked k or v cache (for now, the shapes of them are the same)
context_lengths: torch.Tensor, # [bsz], past kv seq len (not incorporating the current kv of length 1)
block_tables: torch.Tensor, # [bsz, max_blocks_per_sequence]
k: torch.Tensor,
k_cache: torch.Tensor,
kv_lengths: torch.Tensor,
block_tables: torch.Tensor,
):
"""
Copy keys or values to the blocked key/value cache during decoding stage.
Parameters:
- k (torch.Tensor): [bsz, 1, num_kv_heads, head_dim] - Keys or values during decoding with seq len 1.
- k_cache (torch.Tensor): [num_blocks, num_kv_heads, head_dim, block_size] - Blocked key or value cache.
- kv_lengths (torch.Tensor): [bsz] - Past key/value sequence lengths plus current sequence length for each sequence.
- block_tables (torch.Tensor): [bsz, max_blocks_per_sequence] - Block tables for each sequence.
"""
assert k.dim() == 4, "Unsupported shape of k (supposed to be used for decoding stage)"
assert k.size(1) == 1, "Unsupported kv seq len (supposed to be used for decoding stage)"
assert k.size(-1) == k_cache.size(-2), "Incompatible head dim"
assert k.dtype == k_cache.dtype, "Expected consistent dtype for tensor and cache."
bsz, _, num_kv_heads, head_dim = k.shape
assert context_lengths.shape[0] == block_tables.shape[0] == bsz, (
assert kv_lengths.shape[0] == block_tables.shape[0] == bsz, (
f"Got incompatible batch size (number of seqs):\n"
f" Conext lengths bsz {context_lengths.shape[0]}, Block tables bsz {block_tables.shape[0]}, "
f"batch size {bsz}"
f" Past kv sequence lengths bsz {kv_lengths.shape[0]}; "
f" block tables bsz {block_tables.shape[0]}, input k batch size {bsz}"
)
# Modify if the shape of kv cahce is changed.
@ -74,7 +81,7 @@ def copy_kv_to_blocked_cache(
k,
k_cache,
block_tables,
context_lengths,
kv_lengths,
k.stride(0),
k.stride(1),
k.stride(2),

View File

@ -30,12 +30,12 @@ def prepare_data(
dtype=torch.float16,
):
if same_context_len:
# context_lengths in this test records the previous kv seq len
# past_kv_seq_lengths in this test records the previous kv seq len
# (not incorporating the current input whose seq len is 1)
context_lengths = torch.tensor([max_seq_len - 1 for _ in range(bsz)], dtype=torch.int32, device=device)
past_kv_seq_lengths = torch.tensor([max_seq_len - 1 for _ in range(bsz)], dtype=torch.int32, device=device)
else:
context_lengths = torch.randint(low=1, high=max_seq_len - 1, size=(bsz,), dtype=torch.int32, device=device)
num_tokens = torch.sum(context_lengths).item()
past_kv_seq_lengths = torch.randint(low=1, high=max_seq_len - 1, size=(bsz,), dtype=torch.int32, device=device)
num_tokens = torch.sum(past_kv_seq_lengths).item()
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
@ -46,15 +46,18 @@ def prepare_data(
v_cache = torch.zeros(size=cache_shape, dtype=dtype, device=device)
# Mock allocation on block tables as well as blocked kv caches
block_tables = mock_alloc_block_table_and_kvcache(
k, v, k_cache, v_cache, context_lengths, bsz, max_num_blocks_per_seq, block_size
k, v, k_cache, v_cache, past_kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size
)
block_tables = block_tables.to(device=device)
new_k = torch.randn((bsz, 1, num_kv_heads, head_dim), dtype=dtype, device=device)
# mock allocating blocks for the new k/v and update block tables
mock_alloc_single_token(block_tables, context_lengths, block_size)
mock_alloc_single_token(block_tables, past_kv_seq_lengths, block_size)
return new_k, k_cache, context_lengths, block_tables
# kv seq len = past kv seq len + seq len (1 during decoding stage)
kv_seq_lengths = past_kv_seq_lengths + 1
return new_k, k_cache, kv_seq_lengths, block_tables
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
@ -80,7 +83,7 @@ def test_copy_kv_to_caches(
dtype = torch.float16
device = get_current_device()
new_k, k_cache, context_lengths, block_tables = prepare_data(
new_k, k_cache, kv_seq_lengths, block_tables = prepare_data(
bsz,
num_kv_heads,
head_dim,
@ -91,25 +94,24 @@ def test_copy_kv_to_caches(
device=device,
dtype=dtype,
)
copy_kv_to_blocked_cache(new_k, k_cache, context_lengths, block_tables)
copy_kv_to_blocked_cache(new_k, k_cache, kv_seq_lengths, block_tables)
for seq_i in range(bsz):
ki = new_k[seq_i]
ki = ki.squeeze()
context_len_i = context_lengths[seq_i]
target_block_id = block_tables[seq_i, context_len_i // block_size]
offsets_in_block = context_len_i % block_size
past_kv_seq_len = kv_seq_lengths[seq_i] - 1
target_block_id = block_tables[seq_i, past_kv_seq_len // block_size]
offsets_in_block = past_kv_seq_len % block_size
target = k_cache[target_block_id, :, :, offsets_in_block]
orig = new_k[seq_i].squeeze(dim=0)
assert torch.equal(orig, target)
BATCH = 4
BATCH = 16
configs = [
triton.testing.Benchmark(
x_names=["PAST_KVLEN"],
x_vals=[2**i - 1 for i in range(8, 13)],
x_names=["KV_SEQ_LEN"],
x_vals=[2**i for i in range(8, 13)],
line_arg="provider",
line_vals=["torch_copy_func", "triton_copy_func"],
line_names=["torch_copy_func", "triton_copy_func"],
@ -127,7 +129,7 @@ def benchmark_kvcache_copy(
bsz: int,
block_size: int,
max_seq_len: int,
PAST_KVLEN: int, # maximum past kv length (unequal context lens in batch) or past kv len (equal context lens)
KV_SEQ_LEN: int, # maximum past kv length (unequal context lens in batch) or past kv len (equal context lens)
num_kv_heads: int,
same_context_len: bool,
):
@ -138,7 +140,7 @@ def benchmark_kvcache_copy(
dtype = torch.float16
device = get_current_device()
assert PAST_KVLEN < max_seq_len, "Assigned maximum past kv length must be smaller or equal to maximum seq len"
assert KV_SEQ_LEN <= max_seq_len, "Assigned maximum kv length must be smaller or equal to maximum seq len"
new_k, k_cache, context_lengths, block_tables = prepare_data(
bsz,
@ -147,7 +149,7 @@ def benchmark_kvcache_copy(
block_size,
max_seq_len // block_size,
same_context_len,
PAST_KVLEN,
KV_SEQ_LEN,
device=device,
dtype=dtype,
)
@ -164,5 +166,5 @@ def benchmark_kvcache_copy(
if __name__ == "__main__":
test_copy_kv_to_caches(4, 32, 8, 16, False)
# benchmark_kvcache_copy.run(save_path=".")
test_copy_kv_to_caches(4, 32, 8, 16, True)
# benchmark_kvcache_copy.run(save_path=".", print_data=True)