mirror of https://github.com/hpcaitech/ColossalAI
237 lines
9.1 KiB
Python
237 lines
9.1 KiB
Python
# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel
|
|
|
|
from colossalai.inference.modeling.layers.attention import PagedAttention
|
|
from colossalai.inference.struct import BatchInfo
|
|
from colossalai.kernel.triton import context_attention_unpadded, copy_kv_to_blocked_cache, flash_decoding_fwd
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
|
|
|
|
logger = get_dist_logger(__name__)
|
|
|
|
try:
|
|
HAS_TRITON = True
|
|
except ImportError:
|
|
HAS_TRITON = False
|
|
logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.")
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
|
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
|
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
@torch.no_grad()
|
|
def llama_causal_lm_forward(
|
|
self: LlamaForCausalLM,
|
|
batch: BatchInfo = None,
|
|
k_caches: List[torch.Tensor] = None,
|
|
v_caches: List[torch.Tensor] = None,
|
|
padding_id: int = None,
|
|
):
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
hidden_states = llama_model_forward(
|
|
self.model,
|
|
batch=batch,
|
|
k_caches=k_caches,
|
|
v_caches=v_caches,
|
|
padding_id=padding_id,
|
|
)
|
|
logits = self.lm_head(hidden_states)
|
|
return logits
|
|
|
|
|
|
@torch.no_grad()
|
|
def llama_model_forward(
|
|
self: LlamaModel,
|
|
batch: BatchInfo = None,
|
|
k_caches: List[torch.Tensor] = None,
|
|
v_caches: List[torch.Tensor] = None,
|
|
padding_id: int = None,
|
|
):
|
|
input_ids = batch.get_batch_inputs()
|
|
block_tables = batch.get_block_table_tensor()
|
|
attention_mask = batch.get_attn_mask(padding_id)
|
|
|
|
if attention_mask is not None:
|
|
# TODO After the nopad version is implemented, we will use the following code to get sequence_lengths.
|
|
# sequence_lengths = batch.get_sequence_lengths()
|
|
sequence_lengths = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
else:
|
|
sequence_lengths = batch.get_sequence_lengths()
|
|
|
|
kv_seq_len = sequence_lengths.max().item()
|
|
|
|
if attention_mask is not None:
|
|
if batch.is_prompts:
|
|
# Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer.
|
|
position_ids = generate_padding_position_id(attention_mask)
|
|
else:
|
|
position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1)
|
|
else:
|
|
if batch.is_prompts:
|
|
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=batch.device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
else:
|
|
position_ids = torch.arange(kv_seq_len - 1, kv_seq_len, dtype=torch.long, device=batch.device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
|
|
for layer_id, decoder_layer in enumerate(self.layers):
|
|
hidden_states = decoder_layer(
|
|
hidden_states,
|
|
position_ids=position_ids,
|
|
block_tables=block_tables,
|
|
k_cache=k_caches[layer_id],
|
|
v_cache=v_caches[layer_id],
|
|
is_prompts=batch.is_prompts,
|
|
sequence_lengths=sequence_lengths,
|
|
attention_mask=attention_mask,
|
|
kv_seq_len=kv_seq_len,
|
|
)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
@torch.no_grad()
|
|
def llama_decoder_layer_forward(
|
|
self: LlamaDecoderLayer,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.LongTensor,
|
|
block_tables: torch.Tensor = None,
|
|
k_cache: torch.Tensor = None,
|
|
v_cache: torch.Tensor = None,
|
|
is_prompts: bool = True,
|
|
sequence_lengths: int = None,
|
|
attention_mask: torch.Tensor = None,
|
|
kv_seq_len: int = 0,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
# Self Attention
|
|
hidden_states = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
position_ids=position_ids,
|
|
block_tables=block_tables,
|
|
k_cache=k_cache,
|
|
v_cache=v_cache,
|
|
is_prompts=is_prompts,
|
|
sequence_lengths=sequence_lengths,
|
|
attention_mask=attention_mask,
|
|
kv_seq_len=kv_seq_len,
|
|
)
|
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
return hidden_states
|
|
|
|
|
|
# Replace transformers.models.llama.modeling_llama.LlamaAttention.forward
|
|
@torch.no_grad()
|
|
def llama_attn_forward(
|
|
self: LlamaAttention,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.LongTensor,
|
|
block_tables: torch.Tensor = None,
|
|
k_cache: torch.Tensor = None,
|
|
v_cache: torch.Tensor = None,
|
|
is_prompts: bool = True,
|
|
sequence_lengths: torch.Tensor = None,
|
|
attention_mask: torch.Tensor = None,
|
|
kv_seq_len: int = 0,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
_, _, _, block_size = k_cache.shape
|
|
|
|
if is_prompts:
|
|
if HAS_TRITON:
|
|
if attention_mask is not None:
|
|
query_states, key_states, value_states, indices = unpading_input(
|
|
query_states, key_states, value_states, attention_mask
|
|
)
|
|
else:
|
|
query_states = query_states.view(-1, self.num_heads, self.head_dim)
|
|
key_states = key_states.view(-1, self.num_heads, self.head_dim)
|
|
value_states = value_states.view(-1, self.num_heads, self.head_dim)
|
|
|
|
attn_output = context_attention_unpadded(
|
|
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size
|
|
)
|
|
if attention_mask is not None:
|
|
attn_output = pad_input(attn_output, indices, bsz, q_len)
|
|
else:
|
|
attn_output = PagedAttention.pad_context_forward(
|
|
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask
|
|
)
|
|
else:
|
|
if HAS_TRITON:
|
|
copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
|
copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables)
|
|
attn_output = flash_decoding_fwd(query_states, k_cache, v_cache, sequence_lengths, block_tables, block_size)
|
|
else:
|
|
attn_output = PagedAttention.pad_decoding_forward(
|
|
query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask
|
|
)
|
|
|
|
attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim)
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output
|
|
|
|
|
|
@torch.no_grad()
|
|
def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor:
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
return position_ids
|
|
|
|
|
|
@torch.no_grad()
|
|
def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor):
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape
|
|
q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
|
k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
|
v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices)
|
|
return (q, k, v, indices)
|