# This code is adapted from huggingface transformers: https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/llama/modeling_llama.py from typing import List, Optional, Tuple import torch from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaModel from colossalai.inference.modeling.layers.attention import PagedAttention from colossalai.inference.struct import BatchInfo from colossalai.kernel.triton import context_attention_unpadded, copy_kv_to_blocked_cache, flash_decoding_fwd from colossalai.logging import get_dist_logger from flash_attn.bert_padding import index_first_axis, pad_input # noqa logger = get_dist_logger(__name__) try: HAS_TRITON = True except ImportError: HAS_TRITON = False logger.warning(f"triton has not been installed yet, we will use torch to complete the attention calculation.") def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed @torch.no_grad() def llama_causal_lm_forward( self: LlamaForCausalLM, batch: BatchInfo = None, k_caches: List[torch.Tensor] = None, v_caches: List[torch.Tensor] = None, padding_id: int = None, ): # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) hidden_states = llama_model_forward( self.model, batch=batch, k_caches=k_caches, v_caches=v_caches, padding_id=padding_id, ) logits = self.lm_head(hidden_states) return logits @torch.no_grad() def llama_model_forward( self: LlamaModel, batch: BatchInfo = None, k_caches: List[torch.Tensor] = None, v_caches: List[torch.Tensor] = None, padding_id: int = None, ): input_ids = batch.get_batch_inputs() block_tables = batch.get_block_table_tensor() attention_mask = batch.get_attn_mask(padding_id) if attention_mask is not None: # TODO After the nopad version is implemented, we will use the following code to get sequence_lengths. # sequence_lengths = batch.get_sequence_lengths() sequence_lengths = attention_mask.sum(dim=-1, dtype=torch.int32) else: sequence_lengths = batch.get_sequence_lengths() kv_seq_len = sequence_lengths.max().item() if attention_mask is not None: if batch.is_prompts: # Here, we generate position_ids through the input tensor, which can align with the output precision of the transformer. position_ids = generate_padding_position_id(attention_mask) else: position_ids = (attention_mask.sum(dim=-1) - 1).reshape(-1, 1) else: if batch.is_prompts: position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=batch.device) position_ids = position_ids.unsqueeze(0) else: position_ids = torch.arange(kv_seq_len - 1, kv_seq_len, dtype=torch.long, device=batch.device) position_ids = position_ids.unsqueeze(0) hidden_states = self.embed_tokens(input_ids) for layer_id, decoder_layer in enumerate(self.layers): hidden_states = decoder_layer( hidden_states, position_ids=position_ids, block_tables=block_tables, k_cache=k_caches[layer_id], v_cache=v_caches[layer_id], is_prompts=batch.is_prompts, sequence_lengths=sequence_lengths, attention_mask=attention_mask, kv_seq_len=kv_seq_len, ) hidden_states = self.norm(hidden_states) return hidden_states @torch.no_grad() def llama_decoder_layer_forward( self: LlamaDecoderLayer, hidden_states: torch.Tensor, position_ids: torch.LongTensor, block_tables: torch.Tensor = None, k_cache: torch.Tensor = None, v_cache: torch.Tensor = None, is_prompts: bool = True, sequence_lengths: int = None, attention_mask: torch.Tensor = None, kv_seq_len: int = 0, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states = self.self_attn( hidden_states=hidden_states, position_ids=position_ids, block_tables=block_tables, k_cache=k_cache, v_cache=v_cache, is_prompts=is_prompts, sequence_lengths=sequence_lengths, attention_mask=attention_mask, kv_seq_len=kv_seq_len, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states # Replace transformers.models.llama.modeling_llama.LlamaAttention.forward @torch.no_grad() def llama_attn_forward( self: LlamaAttention, hidden_states: torch.Tensor, position_ids: torch.LongTensor, block_tables: torch.Tensor = None, k_cache: torch.Tensor = None, v_cache: torch.Tensor = None, is_prompts: bool = True, sequence_lengths: torch.Tensor = None, attention_mask: torch.Tensor = None, kv_seq_len: int = 0, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) _, _, _, block_size = k_cache.shape if is_prompts: if HAS_TRITON: if attention_mask is not None: query_states, key_states, value_states, indices = unpading_input( query_states, key_states, value_states, attention_mask ) else: query_states = query_states.view(-1, self.num_heads, self.head_dim) key_states = key_states.view(-1, self.num_heads, self.head_dim) value_states = value_states.view(-1, self.num_heads, self.head_dim) attn_output = context_attention_unpadded( query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, block_size ) if attention_mask is not None: attn_output = pad_input(attn_output, indices, bsz, q_len) else: attn_output = PagedAttention.pad_context_forward( query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask ) else: if HAS_TRITON: copy_kv_to_blocked_cache(key_states, k_cache, kv_lengths=sequence_lengths, block_tables=block_tables) copy_kv_to_blocked_cache(value_states, v_cache, kv_lengths=sequence_lengths, block_tables=block_tables) attn_output = flash_decoding_fwd(query_states, k_cache, v_cache, sequence_lengths, block_tables, block_size) else: attn_output = PagedAttention.pad_decoding_forward( query_states, key_states, value_states, k_cache, v_cache, sequence_lengths, block_tables, attention_mask ) attn_output = attn_output.view(bsz, q_len, self.num_heads, self.head_dim) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output @torch.no_grad() def generate_padding_position_id(attention_mask: torch.Tensor) -> torch.Tensor: position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) return position_ids @torch.no_grad() def unpading_input(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attention_mask: torch.Tensor): indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() batch_size, kv_seq_len, num_key_value_heads, head_dim = q.shape q = index_first_axis(q.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices) k = index_first_axis(k.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices) v = index_first_axis(v.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices) return (q, k, v, indices)