mirror of https://github.com/hpcaitech/ColossalAI
[model checkpoint] added unit tests for checkpoint save/load (#599)
parent
28b515d610
commit
354b7954d1
|
@ -138,3 +138,6 @@ dmypy.json
|
|||
#data/
|
||||
|
||||
docs/.build
|
||||
|
||||
# pytorch checkpoint
|
||||
*.pt
|
|
@ -0,0 +1,78 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import pprint
|
||||
from functools import partial
|
||||
|
||||
import colossalai.nn as col_nn
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.utils import free_port, is_using_pp
|
||||
from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint
|
||||
|
||||
|
||||
def build_pipeline(model):
|
||||
from colossalai.builder.pipeline import partition_uniform
|
||||
|
||||
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
|
||||
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
depth = len(model)
|
||||
start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0]
|
||||
layers = []
|
||||
for i in range(depth):
|
||||
if start <= i < end:
|
||||
layers.append(model[i])
|
||||
else:
|
||||
layers.append(nn.Identity())
|
||||
return nn.Sequential(*tuple(layers))
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
|
||||
|
||||
|
||||
def check_checkpoint_1d(rank, world_size, port):
|
||||
config = dict(
|
||||
parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, mode="1d")),
|
||||
)
|
||||
|
||||
disable_existing_loggers()
|
||||
launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4))
|
||||
sd1 = m1.state_dict()
|
||||
if gpc.get_global_rank() == 0:
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n")
|
||||
save_checkpoint("test.pt", 0, m1)
|
||||
|
||||
m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4))
|
||||
if is_using_pp():
|
||||
m2 = build_pipeline(m2)
|
||||
|
||||
load_checkpoint("test.pt", m2)
|
||||
sd2 = m2.state_dict()
|
||||
if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
|
||||
sd2 = gather_pipeline_parallel_state_dict(sd2)
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n")
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
for k, v in sd1.items():
|
||||
assert k in sd2
|
||||
check_equal(v, sd2[k].to(torch.device("cpu")))
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_checkpoint_1d():
|
||||
world_size = 8
|
||||
run_func = partial(check_checkpoint_1d, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_checkpoint_1d()
|
|
@ -0,0 +1,78 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import pprint
|
||||
from functools import partial
|
||||
|
||||
import colossalai.nn as col_nn
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.utils import free_port, get_current_device, is_using_pp
|
||||
from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint
|
||||
|
||||
|
||||
def build_pipeline(model):
|
||||
from colossalai.builder.pipeline import partition_uniform
|
||||
|
||||
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
|
||||
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
depth = len(model)
|
||||
start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0]
|
||||
layers = []
|
||||
for i in range(depth):
|
||||
if start <= i < end:
|
||||
layers.append(model[i])
|
||||
else:
|
||||
layers.append(nn.Identity())
|
||||
return nn.Sequential(*tuple(layers))
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
|
||||
|
||||
|
||||
def check_checkpoint_2d(rank, world_size, port):
|
||||
config = dict(
|
||||
parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, mode="2d")),
|
||||
)
|
||||
|
||||
disable_existing_loggers()
|
||||
launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4))
|
||||
sd1 = m1.state_dict()
|
||||
if gpc.get_global_rank() == 0:
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n")
|
||||
save_checkpoint("test.pt", 0, m1)
|
||||
|
||||
m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4))
|
||||
if is_using_pp():
|
||||
m2 = build_pipeline(m2)
|
||||
|
||||
load_checkpoint("test.pt", m2)
|
||||
sd2 = m2.state_dict()
|
||||
if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
|
||||
sd2 = gather_pipeline_parallel_state_dict(sd2)
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n")
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
for k, v in sd1.items():
|
||||
assert k in sd2
|
||||
check_equal(v, sd2[k].to(torch.device("cpu")))
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_checkpoint_2d():
|
||||
world_size = 8
|
||||
run_func = partial(check_checkpoint_2d, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_checkpoint_2d()
|
|
@ -0,0 +1,78 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import pprint
|
||||
from functools import partial
|
||||
|
||||
import colossalai.nn as col_nn
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.utils import free_port, get_current_device, is_using_pp
|
||||
from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint
|
||||
|
||||
|
||||
def build_pipeline(model):
|
||||
from colossalai.builder.pipeline import partition_uniform
|
||||
|
||||
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
|
||||
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
depth = len(model)
|
||||
start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0]
|
||||
layers = []
|
||||
for i in range(depth):
|
||||
if start <= i < end:
|
||||
layers.append(model[i])
|
||||
else:
|
||||
layers.append(nn.Identity())
|
||||
return nn.Sequential(*tuple(layers))
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
|
||||
|
||||
|
||||
def check_checkpoint_2p5d(rank, world_size, port):
|
||||
config = dict(
|
||||
parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, depth=1, mode="2.5d")),
|
||||
)
|
||||
|
||||
disable_existing_loggers()
|
||||
launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4))
|
||||
sd1 = m1.state_dict()
|
||||
if gpc.get_global_rank() == 0:
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n")
|
||||
save_checkpoint("test.pt", 0, m1)
|
||||
|
||||
m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4))
|
||||
if is_using_pp():
|
||||
m2 = build_pipeline(m2)
|
||||
|
||||
load_checkpoint("test.pt", m2)
|
||||
sd2 = m2.state_dict()
|
||||
if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
|
||||
sd2 = gather_pipeline_parallel_state_dict(sd2)
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n")
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
for k, v in sd1.items():
|
||||
assert k in sd2
|
||||
check_equal(v, sd2[k].to(torch.device("cpu")))
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_checkpoint_2p5d():
|
||||
world_size = 8
|
||||
run_func = partial(check_checkpoint_2p5d, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_checkpoint_2p5d()
|
|
@ -0,0 +1,78 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import pprint
|
||||
from functools import partial
|
||||
|
||||
import colossalai.nn as col_nn
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.utils import free_port, get_current_device, is_using_pp
|
||||
from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint
|
||||
|
||||
|
||||
def build_pipeline(model):
|
||||
from colossalai.builder.pipeline import partition_uniform
|
||||
|
||||
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
|
||||
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
|
||||
depth = len(model)
|
||||
start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0]
|
||||
layers = []
|
||||
for i in range(depth):
|
||||
if start <= i < end:
|
||||
layers.append(model[i])
|
||||
else:
|
||||
layers.append(nn.Identity())
|
||||
return nn.Sequential(*tuple(layers))
|
||||
|
||||
|
||||
def check_equal(A, B):
|
||||
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
|
||||
|
||||
|
||||
def check_checkpoint_3d(rank, world_size, port):
|
||||
config = dict(
|
||||
parallel=dict(pipeline=dict(size=1), tensor=dict(size=8, mode="3d")),
|
||||
)
|
||||
|
||||
disable_existing_loggers()
|
||||
launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
|
||||
m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4))
|
||||
sd1 = m1.state_dict()
|
||||
if gpc.get_global_rank() == 0:
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n")
|
||||
save_checkpoint("test.pt", 0, m1)
|
||||
|
||||
m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4))
|
||||
if is_using_pp():
|
||||
m2 = build_pipeline(m2)
|
||||
|
||||
load_checkpoint("test.pt", m2)
|
||||
sd2 = m2.state_dict()
|
||||
if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
|
||||
sd2 = gather_pipeline_parallel_state_dict(sd2)
|
||||
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n")
|
||||
|
||||
if gpc.get_global_rank() == 0:
|
||||
for k, v in sd1.items():
|
||||
assert k in sd2
|
||||
check_equal(v, sd2[k].to(torch.device("cpu")))
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_checkpoint_3d():
|
||||
world_size = 8
|
||||
run_func = partial(check_checkpoint_3d, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_checkpoint_3d()
|
Loading…
Reference in New Issue