mirror of https://github.com/hpcaitech/ColossalAI
[model checkpoint] updated checkpoint hook (#598)
parent
77ad24bf94
commit
28b515d610
|
@ -1,12 +1,12 @@
|
|||
from ._base_hook import BaseHook
|
||||
from ._checkpoint_hook import LoadCheckpointHook, SaveCheckpointHook
|
||||
from ._checkpoint_hook import SaveCheckpointHook
|
||||
from ._log_hook import (LogMemoryByEpochHook, LogMetricByEpochHook, LogMetricByStepHook, LogTimingByEpochHook,
|
||||
TensorboardHook)
|
||||
from ._lr_scheduler_hook import LRSchedulerHook
|
||||
from ._metric_hook import AccuracyHook, LossHook, MetricHook, ThroughputHook
|
||||
|
||||
__all__ = [
|
||||
'BaseHook', 'MetricHook', 'LoadCheckpointHook', 'SaveCheckpointHook', 'LossHook', 'AccuracyHook',
|
||||
'LogMetricByEpochHook', 'TensorboardHook', 'LogTimingByEpochHook', 'LogMemoryByEpochHook', 'LRSchedulerHook',
|
||||
'ThroughputHook', 'LogMetricByStepHook'
|
||||
'BaseHook', 'MetricHook', 'LossHook', 'AccuracyHook', 'LogMetricByEpochHook', 'TensorboardHook',
|
||||
'LogTimingByEpochHook', 'LogMemoryByEpochHook', 'LRSchedulerHook', 'ThroughputHook', 'LogMetricByStepHook',
|
||||
'SaveCheckpointHook'
|
||||
]
|
||||
|
|
|
@ -1,14 +1,11 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import os.path as osp
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
from colossalai.registry import HOOKS
|
||||
from colossalai.trainer.hooks import BaseHook
|
||||
from colossalai.utils import is_dp_rank_0
|
||||
from colossalai.utils.checkpointing import get_latest_checkpoint_path, get_checkpoint_path
|
||||
from colossalai.utils.checkpointing import save_checkpoint, load_checkpoint
|
||||
from colossalai.utils.checkpointing import save_checkpoint
|
||||
from ._lr_scheduler_hook import LRSchedulerHook
|
||||
|
||||
|
||||
|
@ -17,9 +14,8 @@ class SaveCheckpointHook(BaseHook):
|
|||
"""Saves the model by interval in training process.
|
||||
|
||||
Args:
|
||||
interval (int, optional): Saving interval, defaults to 1.
|
||||
checkpoint_dir (str, optional): Directory of saving checkpoint, defaults to None.
|
||||
suffix (str, optional): Saving suffix of the file, defaults to ''.
|
||||
interval (int, optional): Number of epochs between saving the checkpoint, defaults to 1.
|
||||
checkpoint_dir (str, optional): File name to save the checkpoint, defaults to None.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front
|
||||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
|
@ -28,19 +24,17 @@ class SaveCheckpointHook(BaseHook):
|
|||
def __init__(self,
|
||||
interval: int = 1,
|
||||
checkpoint_dir: str = None,
|
||||
suffix: str = '',
|
||||
priority: int = 10):
|
||||
super().__init__(priority=priority)
|
||||
self.interval = interval
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.suffix = suffix
|
||||
self.logger = get_dist_logger()
|
||||
|
||||
# get lr scheduler from the LRSchedulerHook before train
|
||||
self._lr_scheduler = None
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
# check if lr scheduler is present in LRSchedulerHook
|
||||
# get lr scheduler if exists
|
||||
for hook in trainer.hooks:
|
||||
if isinstance(hook, LRSchedulerHook):
|
||||
self._lr_scheduler = hook.lr_scheduler
|
||||
|
@ -51,82 +45,10 @@ class SaveCheckpointHook(BaseHook):
|
|||
"""
|
||||
# save by interval
|
||||
if trainer.cur_epoch % self.interval == 0:
|
||||
# only gpus with data parallel rank equals to 0 write to the disk
|
||||
if is_dp_rank_0():
|
||||
save_path = get_checkpoint_path(self.checkpoint_dir,
|
||||
trainer.cur_epoch,
|
||||
suffix=self.suffix)
|
||||
|
||||
save_checkpoint(save_path,
|
||||
trainer.cur_epoch,
|
||||
trainer.engine.model,
|
||||
trainer.engine.optimizer,
|
||||
self._lr_scheduler)
|
||||
self.logger.info(
|
||||
f'checkpoint for epoch {trainer.cur_epoch} is saved to {self.checkpoint_dir}', ranks=[0])
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class LoadCheckpointHook(BaseHook):
|
||||
"""Loads the model before training process.
|
||||
|
||||
Args:
|
||||
checkpoint_dir (str, optional): Directory of saving checkpoint, defaults to None.
|
||||
epoch (str, optional): Loading checkpoint of setting epoch numbers, defaults to -1.
|
||||
Epoch equals to -1 means choosing the latest checkpoint.
|
||||
finetune (bool, optional): Whether allows to load a part of the model, defaults to False.
|
||||
strict (bool, optional): Whether to strictly enforce that the keys in :attr:`state_dict` of the checkpoint
|
||||
match the names of parameters and buffers in model, defaults to False.
|
||||
suffix (str, optional): Suffix of checkpoint file path, defaults to ''.
|
||||
priority (int, optional): Priority in the printing, hooks with small priority will be printed in front,
|
||||
defaults to 0. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
checkpoint_dir: str = None,
|
||||
epoch: int = -1,
|
||||
finetune: bool = False,
|
||||
strict: bool = False,
|
||||
suffix: str = '',
|
||||
priority: int = 0) -> None:
|
||||
super().__init__(priority=priority)
|
||||
self.epoch = epoch
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.finetune = finetune
|
||||
self.suffix = suffix
|
||||
self.strict = strict
|
||||
self.logger = get_dist_logger()
|
||||
|
||||
def before_train(self, trainer):
|
||||
"""Loads parameters to the model before training.
|
||||
"""
|
||||
# check if lr scheduler is present in LRSchedulerHook
|
||||
lr_scheduler = None
|
||||
for hook in trainer.hooks:
|
||||
if isinstance(hook, LRSchedulerHook):
|
||||
lr_scheduler = hook.lr_scheduler
|
||||
break
|
||||
|
||||
# use latest checkpoint if epoch = -1
|
||||
if self.epoch == -1:
|
||||
path = get_latest_checkpoint_path(self.checkpoint_dir, suffix=self.suffix)
|
||||
else:
|
||||
path = get_checkpoint_path(self.checkpoint_dir, epoch=self.epoch, suffix=self.suffix)
|
||||
|
||||
if osp.exists(path):
|
||||
last_epoch, _ = load_checkpoint(path,
|
||||
trainer.engine.model,
|
||||
trainer.engine.optimizer,
|
||||
lr_scheduler,
|
||||
finetune=self.finetune,
|
||||
strict=self.strict)
|
||||
if self.finetune:
|
||||
trainer.cur_epoch = 0
|
||||
else:
|
||||
trainer.cur_epoch = last_epoch
|
||||
|
||||
save_checkpoint(self.checkpoint_dir,
|
||||
trainer.cur_epoch,
|
||||
trainer.engine.model,
|
||||
trainer.engine.optimizer,
|
||||
self._lr_scheduler)
|
||||
self.logger.info(
|
||||
f'loaded checkpoint from {path}', ranks=[0])
|
||||
else:
|
||||
raise FileNotFoundError(f'checkpoint is not found at {path}')
|
||||
f'checkpoint for epoch {trainer.cur_epoch} is saved to {self.checkpoint_dir}', ranks=[0])
|
||||
|
|
Loading…
Reference in New Issue