[feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
colossalchat
Tong Li 2024-08-02 10:06:25 +08:00 committed by GitHub
parent 62cdac6b7b
commit 19d1510ea2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 93 additions and 77 deletions

View File

@ -197,9 +197,7 @@ class AGIEvalDataset(BaseDataset):
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"test": {}}
files = glob.glob(os.path.join(path, "*.jsonl"))

View File

@ -1,6 +1,9 @@
from abc import abstractstaticmethod
from colossal_eval.utils import jdump
from torch.utils.data import Dataset
from colossalai.logging import DistributedLogger
class BaseDataset:
@ -12,13 +15,24 @@ class BaseDataset:
logger: Logger for the dataset.
"""
def __init__(self, path, logger, few_shot, forward_only=False, load_train=False, load_reference=False):
self.dataset = self.load(path, logger, few_shot, forward_only, load_train, load_reference)
def __init__(self, path, logger, *args, **kwargs):
self.dataset = self.load(path, logger, *args, **kwargs)
def save(self, save_path):
"""Save the converted dataset"""
jdump(self.dataset, save_path)
@abstractstaticmethod
def load(path, logger):
def load(path, logger: DistributedLogger, *args, **kwargs):
"""Load the original dataset and convert it into the inference dataset"""
class DistributedDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]

View File

@ -90,9 +90,7 @@ class CEvalDataset(BaseDataset):
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
for split in ["dev", "test"]:
files = os.listdir(os.path.join(path, split))

View File

@ -101,9 +101,7 @@ class CMMLUDataset(BaseDataset):
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
for split in ["dev", "test"]:
files = os.listdir(os.path.join(path, split))

View File

@ -37,7 +37,7 @@ class ColossalDataset(BaseDataset):
"""
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]:
dataset = {"test": {}}
data = jload(path)
data_per_category = get_data_per_category(data)

View File

@ -28,7 +28,7 @@ class CValuesDataset(BaseDataset):
"""
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]:
dataset = {"test": {}}
file_path = os.path.join(path, "cvalues_responsibility_mc.jsonl")
data_list = []

View File

@ -69,9 +69,7 @@ class GaoKaoBenchDataset(BaseDataset):
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]:
dataset = {"test": {}}
for category in ["Fill-in-the-blank_Questions", "Multiple-choice_Questions", "Open-ended_Questions"]:
files = os.listdir(os.path.join(path, "data", category))

View File

@ -77,7 +77,7 @@ class LongBenchDataset(BaseDataset):
"""
@staticmethod
def load(path: str, logger: DistributedLogger) -> List[Dict]:
def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]:
dataset = {"test": {}}
files = os.listdir(path)

View File

@ -31,9 +31,7 @@ class MMLUDataset(BaseDataset):
"""
@staticmethod
def load(
path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool
) -> List[Dict]:
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
for split in ["dev", "test"]:
files = os.listdir(os.path.join(path, split))

View File

@ -27,12 +27,12 @@ class MTBenchDataset(BaseDataset):
This dataset class will convert the original dataset into the inference dataset.
"""
def __init__(self, path, logger, few_shot):
def __init__(self, path, logger: DistributedLogger, *args, **kwargs):
self.multiturn = True
self.dataset = self.load(path, logger, few_shot)
self.dataset = self.load(path, logger, *args, **kwargs)
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]:
dataset = {"test": defaultdict(dict)}
file_path = os.path.join(path, "question.jsonl")

View File

@ -130,7 +130,7 @@ class SafetyBenchENDataset(BaseDataset):
"""
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
data_files = [os.path.join(path, file_name) for file_name in FILES]
for file_path in data_files:

View File

@ -130,7 +130,7 @@ class SafetyBenchZHDataset(BaseDataset):
"""
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"dev": {}, "test": {}}
data_files = [os.path.join(path, file_name) for file_name in FILES]
for file_path in data_files:

View File

@ -1,11 +1,11 @@
import copy
import math
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import torch
from colossal_eval.utils import Conversation, get_batch_prompt, is_rank_0
from peft import PeftModel
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer
@ -130,7 +130,7 @@ class HuggingFaceModel(BaseModel):
if shard_config is not None:
self.model = AutoModel.from_pretrained(path, **model_kwargs)
shard_former = ShardFormer(shard_config)
self.model, sharded_parameters = shard_former.optimize(self.model)
self.model, _ = shard_former.optimize(self.model)
self.model.to(get_current_device())
if peft_path is not None:
@ -325,7 +325,7 @@ class HuggingFaceModel(BaseModel):
return input_ids_list, labels_list, None
def inference(self, data: List[Dict], inference_kwargs: Dict[str, Any], debug: bool = False) -> List[Dict]:
def inference(self, data_loader: DataLoader, inference_kwargs: Dict[str, Any], debug: bool = False) -> List[Dict]:
"""
Infer the given data.
This function will call self.generate() to get model outputs and also self.model() to get logits.
@ -359,26 +359,23 @@ class HuggingFaceModel(BaseModel):
self.str_label_map = {choice: idx for idx, choice in enumerate(self.choices)}
turn = 0 if not isinstance(data[0]["output"], list) else len(data[0]["output"]) + 1
turn_desc = "" if turn == 0 else f"-turn{turn}"
bar = tqdm(
range(math.ceil(len(data) / self.batch_size)),
desc=f"{data[0]['dataset']}-{data[0]['category']}{turn_desc} Inference steps",
range(len(data_loader)),
desc=f"{inference_kwargs['dataset']}-{inference_kwargs['category']} Inference steps",
disable=not is_rank_0(),
)
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
answers = copy.deepcopy(data)
for i in range(0, len(data), self.batch_size):
batch = data[i : i + self.batch_size]
answers = []
for i, batch in enumerate(data_loader):
batch_prompt, batch_target = get_batch_prompt(
self.prompt_template, batch, few_shot_data, self.tokenizer, language, self.model_max_length
self.prompt_template, batch, few_shot_data, self.tokenizer, self.model_max_length
)
if is_rank_0() and debug and i == 0:
self.logger.info(
f"Inference arguments for dataset {data[0]['dataset']} category {data[0]['category']} is:\n{inference_kwargs}"
f"Inference arguments for dataset {batch[0]['dataset']} category {batch[0]['category']} is:\n{inference_kwargs}"
)
self.logger.info("-" * 120)
self.logger.info("An example prompt and prompt with target is:")
@ -402,7 +399,7 @@ class HuggingFaceModel(BaseModel):
# Otherwise this will violate the single-choice setting.
if calculate_loss:
labels = [self.str_label_map[answers[i + j]["target"]] for j in range(len(batch_decodes))]
labels = [self.str_label_map[batch[j]["target"]] for j in range(len(batch))]
loss_over_choices = loss_fct(scores, torch.tensor(labels, dtype=torch.long)).numpy().tolist()
@ -411,29 +408,30 @@ class HuggingFaceModel(BaseModel):
{choice: probs[i][self.str_label_map[choice]] for choice in self.choices} for i in range(len(probs))
]
for j in range(len(batch_prompt)):
for j in range(len(batch)):
if not pretrain:
if isinstance(answers[i + j]["output"], list):
answers[i + j]["output"].append(batch_decodes[j].strip())
if isinstance(batch[j]["output"], list):
batch[j]["output"].append(batch_decodes[j].strip())
else:
answers[i + j]["output"] = batch_decodes[j].strip()
batch[j]["output"] = batch_decodes[j].strip()
if isinstance(scores, torch.Tensor):
answers[i + j]["logits_over_choices"] = probs[j]
batch[j]["logits_over_choices"] = probs[j]
if calculate_loss:
answers[i + j]["loss_over_choices"] = loss_over_choices[j]
batch[j]["loss_over_choices"] = loss_over_choices[j]
if calculate_loss:
answers[i + j]["loss"] = (np.array(batch_losses[j]) / np.array(batch_target_token_nums[j])).tolist()
batch[j]["loss"] = (np.array(batch_losses[j]) / np.array(batch_target_token_nums[j])).tolist()
# loss_sum is specially used for pertrain dataset for calculating per-byte-perplexity.
# However, loss (which is per sample loss) suffices for most cases.
answers[i + j]["loss_sum"] = batch_losses[j]
answers[i + j]["token_num"] = batch_target_token_nums[j]
batch[j]["loss_sum"] = batch_losses[j]
batch[j]["token_num"] = batch_target_token_nums[j]
if batch_bytes_nums:
answers[i + j]["byte_num"] = batch_bytes_nums[j]
batch[j]["byte_num"] = batch_bytes_nums[j]
answers.extend(batch)
bar.update()
@ -600,7 +598,7 @@ class HuggingFaceCausalLM(HuggingFaceModel):
if shard_config is not None:
self.model = AutoModelForCausalLM.from_pretrained(path, **model_kwargs)
shard_former = ShardFormer(shard_config)
self.model, sharded_parameters = shard_former.optimize(self.model)
self.model, _ = shard_former.optimize(self.model)
self.model.to(get_current_device())
if peft_path is not None:

View File

@ -123,15 +123,13 @@ class Conversation:
}
def get_few_shot_prefix(
conv: Conversation, few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], language: str, max_tokens: int
) -> str:
def get_few_shot_prefix(few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], max_tokens: int) -> str:
"""
Get few shot prefix.
Args:
conv: Conversation template.
few_shot_examples: Few shot examples to generate few shot prompt prefix.
few_shot_data: Few shot examples to generate few shot prompt prefix.
tokenizer: tokenizer used to tokenize data.
Returns:
Few shot prompt prefix.
@ -157,7 +155,6 @@ def get_batch_prompt(
batch: List[Dict],
few_shot_data: List[str],
tokenizer: Optional[AutoTokenizer],
language: Optional[str],
model_max_length: Optional[int],
) -> Tuple[List[Dict], List[Dict]]:
"""
@ -167,6 +164,7 @@ def get_batch_prompt(
conv: Conversation template.
batch: Batch data to generate prompt from.
few_shot_data: Few shot data to generate few shot prompt prefix.
tokenizer: tokenizer used to tokenize data.
Returns:
Tuple containg batch prompt and target.
@ -192,7 +190,7 @@ def get_batch_prompt(
else:
raise Exception("When using few-shot, target answer should be a string.")
few_shot_prefix = get_few_shot_prefix(conv, few_shot_data, tokenizer, language, max_tokens)
few_shot_prefix = get_few_shot_prefix(few_shot_data, tokenizer, max_tokens)
conv.append_message(conv.roles[0], few_shot_prefix + query_text)
conv.append_message(conv.roles[1], None)

View File

@ -5,6 +5,8 @@ from typing import Dict, List
import torch.distributed as dist
from colossal_eval import dataset, models, utils
from colossal_eval.dataset.base import DistributedDataset
from torch.utils.data import DataLoader, DistributedSampler
import colossalai
from colossalai.accelerator import get_accelerator
@ -13,6 +15,7 @@ from colossalai.logging import get_dist_logger
from colossalai.shardformer import ShardConfig
logger = get_dist_logger()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def rm_and_merge(
@ -54,7 +57,8 @@ def rm_and_merge(
)
else:
rank_answers = utils.jload(directory)
answers["data"].extend(rank_answers["data"])
deduplidate_answers = [x for x in rank_answers["data"] if x not in answers["data"]]
answers["data"].extend(deduplidate_answers)
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
for r in range(dp_size):
@ -65,7 +69,7 @@ def rm_and_merge(
os.remove(directory)
except Exception as e:
print(e)
print(len(answers["data"]))
all_answers[category] = answers
all_answers_with_dataset_class["inference_results"] = all_answers
@ -108,7 +112,12 @@ def main(args):
tp_rank = coordinates[TP_AXIS]
shard_config = (
ShardConfig(tensor_parallel_process_group=tp_group, enable_tensor_parallelism=args.tp_size > 1)
ShardConfig(
tensor_parallel_process_group=tp_group,
enable_tensor_parallelism=args.tp_size > 1,
parallel_output=False,
enable_all_optimization=True,
)
if args.tp_size > 1
else None
)
@ -183,6 +192,7 @@ def main(args):
model_name = model_parameter["name"]
model_class = eval(f"models.{model_parameter['model_class']}")
paramerters = model_parameter["parameters"]
batch_size = paramerters["batch_size"]
paramerters.update({"logger": logger})
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
paramerters.update({"shard_config": shard_config})
@ -192,7 +202,6 @@ def main(args):
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
for dataset_name, split_data in inference_data.items():
start = 0
prev_questions = None
for category, category_data in split_data.items():
num_turn = category_data["inference_kwargs"].get("turns", 1)
@ -201,26 +210,33 @@ def main(args):
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
answers_to_dump = copy.deepcopy(category_data)
partition_size = len(category_data["data"]) // dp_size
redundant = len(category_data["data"]) % dp_size
# Ensure that the amount of data for inference is as consistent as possible across different processes.
lengths = [partition_size for _ in range(dp_size)]
for j in range(redundant):
lengths[(j + start) % dp_size] += 1
start = (start + redundant) % dp_size
for turn in range(num_turn):
if turn == 0:
questions = category_data["data"][
sum(lengths[0:dp_rank]) : sum(lengths[0:dp_rank]) + lengths[dp_rank]
]
dist_dataset = DistributedDataset(category_data["data"])
else:
questions = prev_questions
dist_dataset = DistributedDataset(prev_questions)
sampler = DistributedSampler(
dist_dataset,
num_replicas=pg_mesh.size(DP_AXIS),
rank=pg_mesh.coordinate(DP_AXIS),
shuffle=False,
)
questions_loader = DataLoader(
dist_dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=8,
pin_memory=True,
collate_fn=lambda x: x,
)
category_data["inference_kwargs"]["dataset"] = dataset_name
category_data["inference_kwargs"]["category"] = category
answers_per_rank = model_.inference(
questions, inference_kwargs=category_data["inference_kwargs"], debug=debug_args[dataset_name]
data_loader=questions_loader,
inference_kwargs=category_data["inference_kwargs"],
debug=debug_args[dataset_name],
)
prev_questions = answers_per_rank