mirror of https://github.com/hpcaitech/ColossalAI
[chore] remove redundant test case, print string & reduce test tokens
parent
d1d1ab871e
commit
62cdac6b7b
|
@ -245,7 +245,6 @@ class MixtralPipelineForwards:
|
|||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
print("input_ids", input_ids.shape)
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
|
|
|
@ -17,7 +17,7 @@ from colossalai.testing.random import seed_all
|
|||
from tests.test_moe.moe_utils import assert_loose_close, check_model_equal
|
||||
|
||||
NUM_BATCH = 8
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4000, 2
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4, 2
|
||||
NUM_LAYERS = 4
|
||||
HIDDEN_SIZE_PER_HEAD = 4
|
||||
NUM_HEADS = 4
|
||||
|
|
|
@ -1,232 +0,0 @@
|
|||
# modified from test_shard_mistral.py
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_all_grad_tensors,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
get_grad_tensors_for_check,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
unwrap_model,
|
||||
)
|
||||
|
||||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
# TODO: SGD failed for full dp
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
||||
model_fn, loss_fn, test_config, pluggin_cls=MoeHybridParallelPlugin, optim_class=torch.optim.SGD
|
||||
)
|
||||
|
||||
org_model = org_model.to(torch.float16)
|
||||
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
||||
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
||||
)
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
# check last hidden state & loss
|
||||
if stage_manager is None or stage_manager.is_last_stage():
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 1e-5, 1e-3
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol, rtol)
|
||||
|
||||
# unwrap model
|
||||
mixtral_model = unwrap_model(org_model, "DeepseekModel", "model")
|
||||
shard_mixtral_model = unwrap_model(sharded_model, "DeepseekModel", "model")
|
||||
|
||||
row_layer_for_check = ["layers[0].self_attn.q_proj", "embed_tokens"]
|
||||
col_layer_for_check = ["layers[0].self_attn.o_proj"]
|
||||
|
||||
name_to_p = {n: p for n, p in mixtral_model.named_parameters()}
|
||||
# Check the grad when using ZeRO-1 and ZeRO-2
|
||||
if (
|
||||
# booster.plugin.zero_stage in [1, 2]
|
||||
booster.plugin.shard_config.enable_sequence_parallelism
|
||||
and booster.plugin.shard_config.sequence_parallelism_mode == "all_to_all"
|
||||
):
|
||||
rank = dist.get_rank()
|
||||
for n, p in shard_mixtral_model.named_parameters():
|
||||
zero_grad = sharded_optimizer.get_param_grad(p)
|
||||
if name_to_p[n].grad is None:
|
||||
name_to_p[n].grad = torch.zeros_like(name_to_p[n].data)
|
||||
continue
|
||||
assert_close(name_to_p[n].grad, zero_grad, atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
|
||||
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
|
||||
grads_to_check = {}
|
||||
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 5e-5, 1e-4
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
row_layer_grads = get_grad_tensors_for_check(
|
||||
mixtral_model,
|
||||
shard_mixtral_model,
|
||||
row_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=0,
|
||||
verbose=False,
|
||||
)
|
||||
col_layer_grads = get_grad_tensors_for_check(
|
||||
mixtral_model,
|
||||
shard_mixtral_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False,
|
||||
)
|
||||
grads_to_check.update(col_layer_grads)
|
||||
grads_to_check.update(row_layer_grads)
|
||||
|
||||
# check grads
|
||||
check_all_grad_tensors(grads_to_check)
|
||||
|
||||
for n, p in shard_mixtral_model.named_parameters():
|
||||
assert_close(name_to_p[n], p, atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
|
||||
# optimizer executes step
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
|
||||
for n, p in shard_mixtral_model.named_parameters():
|
||||
assert_close(name_to_p[n], p, atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
|
||||
# check weights
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 2e-4, 1e-3
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
try:
|
||||
check_weight(
|
||||
mixtral_model,
|
||||
shard_mixtral_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False,
|
||||
)
|
||||
except Exception as e:
|
||||
rank = dist.get_rank()
|
||||
print(f"{rank=}, Failed config: {test_config}")
|
||||
raise e
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@parameterize(
|
||||
"test_config",
|
||||
[
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 1,
|
||||
# "num_microbatches": 2,
|
||||
# "ep_size": 2,
|
||||
# "zero_stage": 0,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp16",
|
||||
# }, # [dp(4)] + [moe_dp(4)]
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 2,
|
||||
# "num_microbatches": 2,
|
||||
# "ep_size": 2,
|
||||
# "zero_stage": 1,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp32",
|
||||
# }, # [dp(2) + pp(2)] + [moe_pp(2)]
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 2,
|
||||
# "ep_size": 2,
|
||||
# "num_microbatches": 2,
|
||||
# "zero_stage": 1,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp16",
|
||||
# "initial_scale": 1,
|
||||
# "find_unused_parameters": True,
|
||||
# }, # [pp(2) + tp(2)] + [pp(2), replicate(2)] pass
|
||||
{ # Ulysess + Flash attention
|
||||
"tp_size": 1,
|
||||
"pp_size": 1,
|
||||
"sp_size": 2,
|
||||
"ep_size": 2,
|
||||
"enable_sequence_parallelism": True,
|
||||
"sequence_parallelism_mode": "all_to_all",
|
||||
"zero_stage": 1,
|
||||
"overlap_communication": False,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
"find_unused_parameters": True,
|
||||
},
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 1,
|
||||
# "ep_size": 2,
|
||||
# "zero_stage": 0,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp32",
|
||||
# }, # [dp(4)] + [ep(2) + moe_tp(2)]
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 1,
|
||||
# "ep_size": 4,
|
||||
# "overlap_communication": False,
|
||||
# "zero_stage": 0,
|
||||
# "precision": "fp32"
|
||||
# }, # full dp for non-moe and full ep for moe
|
||||
],
|
||||
)
|
||||
def run_deepseek_test(test_config):
|
||||
sub_model_zoo = model_zoo.get_sub_registry("transformers_deepseek")
|
||||
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
|
||||
clear_layout_converter()
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def check_deepseek(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_deepseek_test()
|
||||
|
||||
|
||||
@pytest.mark.skip("redundant")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_mixtral():
|
||||
spawn(check_deepseek, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_mixtral()
|
Loading…
Reference in New Issue