From 19d1510ea26d10484a804eb62f6d03dbcc7c80a8 Mon Sep 17 00:00:00 2001 From: Tong Li Date: Fri, 2 Aug 2024 10:06:25 +0800 Subject: [PATCH] [feat] Dist Loader for Eval (#5950) * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support auto distributed data loader * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tp error * remove unused parameters * remove unused * update inference * update docs * update inference --------- Co-authored-by: Michelle Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- .../colossal_eval/dataset/agieval.py | 4 +- .../colossal_eval/dataset/base.py | 20 +++++-- .../colossal_eval/dataset/ceval.py | 4 +- .../colossal_eval/dataset/cmmlu.py | 4 +- .../colossal_eval/dataset/colossalai.py | 2 +- .../colossal_eval/dataset/cvalues.py | 2 +- .../colossal_eval/dataset/gaokaobench.py | 4 +- .../colossal_eval/dataset/longbench.py | 2 +- .../colossal_eval/dataset/mmlu.py | 4 +- .../colossal_eval/dataset/mtbench.py | 6 +-- .../colossal_eval/dataset/safetybench_en.py | 2 +- .../colossal_eval/dataset/safetybench_zh.py | 2 +- .../colossal_eval/models/huggingface.py | 48 ++++++++--------- .../colossal_eval/utils/conversation.py | 12 ++--- .../examples/dataset_evaluation/inference.py | 54 ++++++++++++------- 15 files changed, 93 insertions(+), 77 deletions(-) diff --git a/applications/ColossalEval/colossal_eval/dataset/agieval.py b/applications/ColossalEval/colossal_eval/dataset/agieval.py index d5f230249..c1cfe37d7 100644 --- a/applications/ColossalEval/colossal_eval/dataset/agieval.py +++ b/applications/ColossalEval/colossal_eval/dataset/agieval.py @@ -197,9 +197,7 @@ class AGIEvalDataset(BaseDataset): """ @staticmethod - def load( - path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool - ) -> List[Dict]: + def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]: dataset = {"test": {}} files = glob.glob(os.path.join(path, "*.jsonl")) diff --git a/applications/ColossalEval/colossal_eval/dataset/base.py b/applications/ColossalEval/colossal_eval/dataset/base.py index 531313d7e..a29f56fd1 100644 --- a/applications/ColossalEval/colossal_eval/dataset/base.py +++ b/applications/ColossalEval/colossal_eval/dataset/base.py @@ -1,6 +1,9 @@ from abc import abstractstaticmethod from colossal_eval.utils import jdump +from torch.utils.data import Dataset + +from colossalai.logging import DistributedLogger class BaseDataset: @@ -12,13 +15,24 @@ class BaseDataset: logger: Logger for the dataset. """ - def __init__(self, path, logger, few_shot, forward_only=False, load_train=False, load_reference=False): - self.dataset = self.load(path, logger, few_shot, forward_only, load_train, load_reference) + def __init__(self, path, logger, *args, **kwargs): + self.dataset = self.load(path, logger, *args, **kwargs) def save(self, save_path): """Save the converted dataset""" jdump(self.dataset, save_path) @abstractstaticmethod - def load(path, logger): + def load(path, logger: DistributedLogger, *args, **kwargs): """Load the original dataset and convert it into the inference dataset""" + + +class DistributedDataset(Dataset): + def __init__(self, data): + self.data = data + + def __len__(self): + return len(self.data) + + def __getitem__(self, idx): + return self.data[idx] diff --git a/applications/ColossalEval/colossal_eval/dataset/ceval.py b/applications/ColossalEval/colossal_eval/dataset/ceval.py index 915f4d9b0..1023d1e23 100644 --- a/applications/ColossalEval/colossal_eval/dataset/ceval.py +++ b/applications/ColossalEval/colossal_eval/dataset/ceval.py @@ -90,9 +90,7 @@ class CEvalDataset(BaseDataset): """ @staticmethod - def load( - path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool - ) -> List[Dict]: + def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]: dataset = {"dev": {}, "test": {}} for split in ["dev", "test"]: files = os.listdir(os.path.join(path, split)) diff --git a/applications/ColossalEval/colossal_eval/dataset/cmmlu.py b/applications/ColossalEval/colossal_eval/dataset/cmmlu.py index 477280663..05752c248 100644 --- a/applications/ColossalEval/colossal_eval/dataset/cmmlu.py +++ b/applications/ColossalEval/colossal_eval/dataset/cmmlu.py @@ -101,9 +101,7 @@ class CMMLUDataset(BaseDataset): """ @staticmethod - def load( - path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool - ) -> List[Dict]: + def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]: dataset = {"dev": {}, "test": {}} for split in ["dev", "test"]: files = os.listdir(os.path.join(path, split)) diff --git a/applications/ColossalEval/colossal_eval/dataset/colossalai.py b/applications/ColossalEval/colossal_eval/dataset/colossalai.py index 54ea478ae..0337454fa 100644 --- a/applications/ColossalEval/colossal_eval/dataset/colossalai.py +++ b/applications/ColossalEval/colossal_eval/dataset/colossalai.py @@ -37,7 +37,7 @@ class ColossalDataset(BaseDataset): """ @staticmethod - def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]: + def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]: dataset = {"test": {}} data = jload(path) data_per_category = get_data_per_category(data) diff --git a/applications/ColossalEval/colossal_eval/dataset/cvalues.py b/applications/ColossalEval/colossal_eval/dataset/cvalues.py index 30e802a02..4023a4c76 100644 --- a/applications/ColossalEval/colossal_eval/dataset/cvalues.py +++ b/applications/ColossalEval/colossal_eval/dataset/cvalues.py @@ -28,7 +28,7 @@ class CValuesDataset(BaseDataset): """ @staticmethod - def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]: + def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]: dataset = {"test": {}} file_path = os.path.join(path, "cvalues_responsibility_mc.jsonl") data_list = [] diff --git a/applications/ColossalEval/colossal_eval/dataset/gaokaobench.py b/applications/ColossalEval/colossal_eval/dataset/gaokaobench.py index cda6276bf..44ccea9cf 100644 --- a/applications/ColossalEval/colossal_eval/dataset/gaokaobench.py +++ b/applications/ColossalEval/colossal_eval/dataset/gaokaobench.py @@ -69,9 +69,7 @@ class GaoKaoBenchDataset(BaseDataset): """ @staticmethod - def load( - path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool - ) -> List[Dict]: + def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]: dataset = {"test": {}} for category in ["Fill-in-the-blank_Questions", "Multiple-choice_Questions", "Open-ended_Questions"]: files = os.listdir(os.path.join(path, "data", category)) diff --git a/applications/ColossalEval/colossal_eval/dataset/longbench.py b/applications/ColossalEval/colossal_eval/dataset/longbench.py index 9ea5e3c7d..eb61efaa0 100644 --- a/applications/ColossalEval/colossal_eval/dataset/longbench.py +++ b/applications/ColossalEval/colossal_eval/dataset/longbench.py @@ -77,7 +77,7 @@ class LongBenchDataset(BaseDataset): """ @staticmethod - def load(path: str, logger: DistributedLogger) -> List[Dict]: + def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]: dataset = {"test": {}} files = os.listdir(path) diff --git a/applications/ColossalEval/colossal_eval/dataset/mmlu.py b/applications/ColossalEval/colossal_eval/dataset/mmlu.py index dcda68e8f..e9465c91b 100644 --- a/applications/ColossalEval/colossal_eval/dataset/mmlu.py +++ b/applications/ColossalEval/colossal_eval/dataset/mmlu.py @@ -31,9 +31,7 @@ class MMLUDataset(BaseDataset): """ @staticmethod - def load( - path: str, logger: DistributedLogger, few_shot: bool, forward_only: bool, load_train: bool, load_reference: bool - ) -> List[Dict]: + def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]: dataset = {"dev": {}, "test": {}} for split in ["dev", "test"]: files = os.listdir(os.path.join(path, split)) diff --git a/applications/ColossalEval/colossal_eval/dataset/mtbench.py b/applications/ColossalEval/colossal_eval/dataset/mtbench.py index 031415567..ef474ec4c 100644 --- a/applications/ColossalEval/colossal_eval/dataset/mtbench.py +++ b/applications/ColossalEval/colossal_eval/dataset/mtbench.py @@ -27,12 +27,12 @@ class MTBenchDataset(BaseDataset): This dataset class will convert the original dataset into the inference dataset. """ - def __init__(self, path, logger, few_shot): + def __init__(self, path, logger: DistributedLogger, *args, **kwargs): self.multiturn = True - self.dataset = self.load(path, logger, few_shot) + self.dataset = self.load(path, logger, *args, **kwargs) @staticmethod - def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]: + def load(path: str, logger: DistributedLogger, *args, **kwargs) -> List[Dict]: dataset = {"test": defaultdict(dict)} file_path = os.path.join(path, "question.jsonl") diff --git a/applications/ColossalEval/colossal_eval/dataset/safetybench_en.py b/applications/ColossalEval/colossal_eval/dataset/safetybench_en.py index e77a3da34..8056c3dfd 100644 --- a/applications/ColossalEval/colossal_eval/dataset/safetybench_en.py +++ b/applications/ColossalEval/colossal_eval/dataset/safetybench_en.py @@ -130,7 +130,7 @@ class SafetyBenchENDataset(BaseDataset): """ @staticmethod - def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]: + def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]: dataset = {"dev": {}, "test": {}} data_files = [os.path.join(path, file_name) for file_name in FILES] for file_path in data_files: diff --git a/applications/ColossalEval/colossal_eval/dataset/safetybench_zh.py b/applications/ColossalEval/colossal_eval/dataset/safetybench_zh.py index 3eca808bb..f5f17e64c 100644 --- a/applications/ColossalEval/colossal_eval/dataset/safetybench_zh.py +++ b/applications/ColossalEval/colossal_eval/dataset/safetybench_zh.py @@ -130,7 +130,7 @@ class SafetyBenchZHDataset(BaseDataset): """ @staticmethod - def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]: + def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]: dataset = {"dev": {}, "test": {}} data_files = [os.path.join(path, file_name) for file_name in FILES] for file_path in data_files: diff --git a/applications/ColossalEval/colossal_eval/models/huggingface.py b/applications/ColossalEval/colossal_eval/models/huggingface.py index 23c399cce..e91743525 100644 --- a/applications/ColossalEval/colossal_eval/models/huggingface.py +++ b/applications/ColossalEval/colossal_eval/models/huggingface.py @@ -1,11 +1,11 @@ import copy -import math from typing import Any, Dict, List, Optional, Tuple import numpy as np import torch from colossal_eval.utils import Conversation, get_batch_prompt, is_rank_0 from peft import PeftModel +from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer @@ -130,7 +130,7 @@ class HuggingFaceModel(BaseModel): if shard_config is not None: self.model = AutoModel.from_pretrained(path, **model_kwargs) shard_former = ShardFormer(shard_config) - self.model, sharded_parameters = shard_former.optimize(self.model) + self.model, _ = shard_former.optimize(self.model) self.model.to(get_current_device()) if peft_path is not None: @@ -325,7 +325,7 @@ class HuggingFaceModel(BaseModel): return input_ids_list, labels_list, None - def inference(self, data: List[Dict], inference_kwargs: Dict[str, Any], debug: bool = False) -> List[Dict]: + def inference(self, data_loader: DataLoader, inference_kwargs: Dict[str, Any], debug: bool = False) -> List[Dict]: """ Infer the given data. This function will call self.generate() to get model outputs and also self.model() to get logits. @@ -359,26 +359,23 @@ class HuggingFaceModel(BaseModel): self.str_label_map = {choice: idx for idx, choice in enumerate(self.choices)} - turn = 0 if not isinstance(data[0]["output"], list) else len(data[0]["output"]) + 1 - turn_desc = "" if turn == 0 else f"-turn{turn}" - bar = tqdm( - range(math.ceil(len(data) / self.batch_size)), - desc=f"{data[0]['dataset']}-{data[0]['category']}{turn_desc} Inference steps", + range(len(data_loader)), + desc=f"{inference_kwargs['dataset']}-{inference_kwargs['category']} Inference steps", disable=not is_rank_0(), ) loss_fct = torch.nn.CrossEntropyLoss(reduction="none") - answers = copy.deepcopy(data) - for i in range(0, len(data), self.batch_size): - batch = data[i : i + self.batch_size] + answers = [] + + for i, batch in enumerate(data_loader): batch_prompt, batch_target = get_batch_prompt( - self.prompt_template, batch, few_shot_data, self.tokenizer, language, self.model_max_length + self.prompt_template, batch, few_shot_data, self.tokenizer, self.model_max_length ) if is_rank_0() and debug and i == 0: self.logger.info( - f"Inference arguments for dataset {data[0]['dataset']} category {data[0]['category']} is:\n{inference_kwargs}" + f"Inference arguments for dataset {batch[0]['dataset']} category {batch[0]['category']} is:\n{inference_kwargs}" ) self.logger.info("-" * 120) self.logger.info("An example prompt and prompt with target is:") @@ -402,7 +399,7 @@ class HuggingFaceModel(BaseModel): # Otherwise this will violate the single-choice setting. if calculate_loss: - labels = [self.str_label_map[answers[i + j]["target"]] for j in range(len(batch_decodes))] + labels = [self.str_label_map[batch[j]["target"]] for j in range(len(batch))] loss_over_choices = loss_fct(scores, torch.tensor(labels, dtype=torch.long)).numpy().tolist() @@ -411,29 +408,30 @@ class HuggingFaceModel(BaseModel): {choice: probs[i][self.str_label_map[choice]] for choice in self.choices} for i in range(len(probs)) ] - for j in range(len(batch_prompt)): + for j in range(len(batch)): if not pretrain: - if isinstance(answers[i + j]["output"], list): - answers[i + j]["output"].append(batch_decodes[j].strip()) + if isinstance(batch[j]["output"], list): + batch[j]["output"].append(batch_decodes[j].strip()) else: - answers[i + j]["output"] = batch_decodes[j].strip() + batch[j]["output"] = batch_decodes[j].strip() if isinstance(scores, torch.Tensor): - answers[i + j]["logits_over_choices"] = probs[j] + batch[j]["logits_over_choices"] = probs[j] if calculate_loss: - answers[i + j]["loss_over_choices"] = loss_over_choices[j] + batch[j]["loss_over_choices"] = loss_over_choices[j] if calculate_loss: - answers[i + j]["loss"] = (np.array(batch_losses[j]) / np.array(batch_target_token_nums[j])).tolist() + batch[j]["loss"] = (np.array(batch_losses[j]) / np.array(batch_target_token_nums[j])).tolist() # loss_sum is specially used for pertrain dataset for calculating per-byte-perplexity. # However, loss (which is per sample loss) suffices for most cases. - answers[i + j]["loss_sum"] = batch_losses[j] - answers[i + j]["token_num"] = batch_target_token_nums[j] + batch[j]["loss_sum"] = batch_losses[j] + batch[j]["token_num"] = batch_target_token_nums[j] if batch_bytes_nums: - answers[i + j]["byte_num"] = batch_bytes_nums[j] + batch[j]["byte_num"] = batch_bytes_nums[j] + answers.extend(batch) bar.update() @@ -600,7 +598,7 @@ class HuggingFaceCausalLM(HuggingFaceModel): if shard_config is not None: self.model = AutoModelForCausalLM.from_pretrained(path, **model_kwargs) shard_former = ShardFormer(shard_config) - self.model, sharded_parameters = shard_former.optimize(self.model) + self.model, _ = shard_former.optimize(self.model) self.model.to(get_current_device()) if peft_path is not None: diff --git a/applications/ColossalEval/colossal_eval/utils/conversation.py b/applications/ColossalEval/colossal_eval/utils/conversation.py index 330083aa6..c0445e84e 100644 --- a/applications/ColossalEval/colossal_eval/utils/conversation.py +++ b/applications/ColossalEval/colossal_eval/utils/conversation.py @@ -123,15 +123,13 @@ class Conversation: } -def get_few_shot_prefix( - conv: Conversation, few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], language: str, max_tokens: int -) -> str: +def get_few_shot_prefix(few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], max_tokens: int) -> str: """ Get few shot prefix. Args: - conv: Conversation template. - few_shot_examples: Few shot examples to generate few shot prompt prefix. + few_shot_data: Few shot examples to generate few shot prompt prefix. + tokenizer: tokenizer used to tokenize data. Returns: Few shot prompt prefix. @@ -157,7 +155,6 @@ def get_batch_prompt( batch: List[Dict], few_shot_data: List[str], tokenizer: Optional[AutoTokenizer], - language: Optional[str], model_max_length: Optional[int], ) -> Tuple[List[Dict], List[Dict]]: """ @@ -167,6 +164,7 @@ def get_batch_prompt( conv: Conversation template. batch: Batch data to generate prompt from. few_shot_data: Few shot data to generate few shot prompt prefix. + tokenizer: tokenizer used to tokenize data. Returns: Tuple containg batch prompt and target. @@ -192,7 +190,7 @@ def get_batch_prompt( else: raise Exception("When using few-shot, target answer should be a string.") - few_shot_prefix = get_few_shot_prefix(conv, few_shot_data, tokenizer, language, max_tokens) + few_shot_prefix = get_few_shot_prefix(few_shot_data, tokenizer, max_tokens) conv.append_message(conv.roles[0], few_shot_prefix + query_text) conv.append_message(conv.roles[1], None) diff --git a/applications/ColossalEval/examples/dataset_evaluation/inference.py b/applications/ColossalEval/examples/dataset_evaluation/inference.py index a7307635d..c651970ee 100644 --- a/applications/ColossalEval/examples/dataset_evaluation/inference.py +++ b/applications/ColossalEval/examples/dataset_evaluation/inference.py @@ -5,6 +5,8 @@ from typing import Dict, List import torch.distributed as dist from colossal_eval import dataset, models, utils +from colossal_eval.dataset.base import DistributedDataset +from torch.utils.data import DataLoader, DistributedSampler import colossalai from colossalai.accelerator import get_accelerator @@ -13,6 +15,7 @@ from colossalai.logging import get_dist_logger from colossalai.shardformer import ShardConfig logger = get_dist_logger() +os.environ["TOKENIZERS_PARALLELISM"] = "false" def rm_and_merge( @@ -54,7 +57,8 @@ def rm_and_merge( ) else: rank_answers = utils.jload(directory) - answers["data"].extend(rank_answers["data"]) + deduplidate_answers = [x for x in rank_answers["data"] if x not in answers["data"]] + answers["data"].extend(deduplidate_answers) answers["inference_kwargs"] = rank_answers["inference_kwargs"] for r in range(dp_size): @@ -65,7 +69,7 @@ def rm_and_merge( os.remove(directory) except Exception as e: print(e) - + print(len(answers["data"])) all_answers[category] = answers all_answers_with_dataset_class["inference_results"] = all_answers @@ -108,7 +112,12 @@ def main(args): tp_rank = coordinates[TP_AXIS] shard_config = ( - ShardConfig(tensor_parallel_process_group=tp_group, enable_tensor_parallelism=args.tp_size > 1) + ShardConfig( + tensor_parallel_process_group=tp_group, + enable_tensor_parallelism=args.tp_size > 1, + parallel_output=False, + enable_all_optimization=True, + ) if args.tp_size > 1 else None ) @@ -183,6 +192,7 @@ def main(args): model_name = model_parameter["name"] model_class = eval(f"models.{model_parameter['model_class']}") paramerters = model_parameter["parameters"] + batch_size = paramerters["batch_size"] paramerters.update({"logger": logger}) paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]}) paramerters.update({"shard_config": shard_config}) @@ -192,7 +202,6 @@ def main(args): raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.") for dataset_name, split_data in inference_data.items(): - start = 0 prev_questions = None for category, category_data in split_data.items(): num_turn = category_data["inference_kwargs"].get("turns", 1) @@ -201,26 +210,33 @@ def main(args): raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!") answers_to_dump = copy.deepcopy(category_data) - partition_size = len(category_data["data"]) // dp_size - redundant = len(category_data["data"]) % dp_size - - # Ensure that the amount of data for inference is as consistent as possible across different processes. - lengths = [partition_size for _ in range(dp_size)] - for j in range(redundant): - lengths[(j + start) % dp_size] += 1 - - start = (start + redundant) % dp_size - for turn in range(num_turn): if turn == 0: - questions = category_data["data"][ - sum(lengths[0:dp_rank]) : sum(lengths[0:dp_rank]) + lengths[dp_rank] - ] + dist_dataset = DistributedDataset(category_data["data"]) else: - questions = prev_questions + dist_dataset = DistributedDataset(prev_questions) + + sampler = DistributedSampler( + dist_dataset, + num_replicas=pg_mesh.size(DP_AXIS), + rank=pg_mesh.coordinate(DP_AXIS), + shuffle=False, + ) + questions_loader = DataLoader( + dist_dataset, + batch_size=batch_size, + sampler=sampler, + num_workers=8, + pin_memory=True, + collate_fn=lambda x: x, + ) + category_data["inference_kwargs"]["dataset"] = dataset_name + category_data["inference_kwargs"]["category"] = category answers_per_rank = model_.inference( - questions, inference_kwargs=category_data["inference_kwargs"], debug=debug_args[dataset_name] + data_loader=questions_loader, + inference_kwargs=category_data["inference_kwargs"], + debug=debug_args[dataset_name], ) prev_questions = answers_per_rank