[fx] added torchvision model tracing testing (#1216)

* [fx] added torchvision model tracing testing

* remove unused imports
pull/1204/head
Frank Lee 2022-07-06 21:37:56 +08:00 committed by GitHub
parent 52736205d9
commit 11973d892d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 346 additions and 71 deletions

View File

@ -1,4 +1,3 @@
from curses import meta
import operator
import torch
from .registry import meta_patched_function
@ -142,3 +141,40 @@ def torch_bmm(input, mat2, *, out=None):
batch_size, n, m = input.shape
_, _, p = mat2.shape
return torch.empty(batch_size, n, p, device="meta")
@meta_patched_function.register(torch.squeeze)
def torch_squeeze(input, dim=None):
shape = list(input.shape)
if dim is not None:
if dim < 0:
dim = input.dim() + dim
if shape[dim] == 1:
shape.pop(dim)
else:
new_shape = []
for dim_value in shape:
if dim_value == 1:
continue
new_shape.append(dim_value)
shape = new_shape
return torch.empty(shape, device="meta")
@meta_patched_function.register(torch.Tensor.squeeze)
def torch_tensor_squeeze(self, dim=None):
return torch_squeeze(self, dim)
@meta_patched_function.register(torch.unsqueeze)
def torch_unsqueeze(input, dim):
shape = list(input.shape)
if dim < 0:
dim = input.dim() + 1 + dim
shape.insert(dim, 1)
return torch.empty(shape, device="meta")
@meta_patched_function.register(torch.Tensor.unsqueeze)
def torch_tensor_unsqueeze(self, dim):
return torch_unsqueeze(self, dim)

View File

@ -88,6 +88,137 @@ def torch_nn_conv3d(self, input):
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.AvgPool1d)
def torch_nn_avgpool1d(self, input):
num_dim = input.dim()
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
l_in = input.shape[-1]
def _convert_int_to_list(item):
if isinstance(item, int):
return [item] * 1
else:
return item
padding = _convert_int_to_list(self.padding)
kernel_size = _convert_int_to_list(self.kernel_size)
stride = _convert_int_to_list(self.stride)
l_out = math.floor((l_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
result_shape = input.shape[:-1] + (l_out,)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.AvgPool2d)
def torch_nn_avgpool2d(self, input):
num_dim = input.dim()
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
h_in, w_in = input.shape[-2:]
def _convert_int_to_list(item):
if isinstance(item, int):
return [item] * 2
else:
return item
padding = _convert_int_to_list(self.padding)
kernel_size = _convert_int_to_list(self.kernel_size)
stride = _convert_int_to_list(self.stride)
h_out = math.floor((h_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
w_out = math.floor((w_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1)
result_shape = input.shape[:-2] + (
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.AvgPool3d)
def torch_nn_avgpool3d(self, input):
num_dim = input.dim()
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
d_in, h_in, w_in = input.shape[-3:]
def _convert_int_to_list(item):
if isinstance(item, int):
return [item] * 3
else:
return item
padding = _convert_int_to_list(self.padding)
kernel_size = _convert_int_to_list(self.kernel_size)
stride = _convert_int_to_list(self.stride)
d_out = math.floor((d_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
h_out = math.floor((h_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1)
w_out = math.floor((w_in + 2 * padding[2] - kernel_size[2]) / stride[2] + 1)
result_shape = input.shape[:-3] + (
d_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.MaxPool1d)
def torch_nn_maxpool1d(self, input):
num_dim = input.dim()
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
l_in = input.shape[-1]
def _convert_int_to_list(item):
if isinstance(item, int):
return [item] * 1
else:
return item
padding = _convert_int_to_list(self.padding)
dilation = _convert_int_to_list(self.dilation)
kernel_size = _convert_int_to_list(self.kernel_size)
stride = _convert_int_to_list(self.stride)
l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
result_shape = input.shape[:-1] + (l_out,)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.MaxPool2d)
def torch_nn_maxpool2d(self, input):
num_dim = input.dim()
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
h_in, w_in = input.shape[-2:]
def _convert_int_to_list(item):
if isinstance(item, int):
return [item] * 2
else:
return item
padding = _convert_int_to_list(self.padding)
dilation = _convert_int_to_list(self.dilation)
kernel_size = _convert_int_to_list(self.kernel_size)
stride = _convert_int_to_list(self.stride)
h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
result_shape = input.shape[:-2] + (
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.MaxPool3d)
def torch_nn_maxpool3d(self, input):
num_dim = input.dim()

View File

@ -4,9 +4,8 @@ tracer.py:
Implemented a tracer which supports control flow and user-defined meta arguments.
The implementation is partly inspired HuggingFace's fx tracer
"""
import enum
import inspect
import math
import functools
import torch
import torch.nn as nn
@ -22,6 +21,11 @@ from .meta_patch import meta_patched_function, meta_patched_module
__all__ = ['ColoTracer']
class TracerType(enum.Enum):
DEFAULT = 1
META = 2
class ColoTracer(Tracer):
"""
ColoTracer is a symbolic tracer designed to support dynamic control flow by using meta tensors for the `colossalai.fx` module.
@ -48,6 +52,11 @@ class ColoTracer(Tracer):
graph = tracer.trace(model, concrete_args={'y': torch.rand(4, 10)}, meta_args={'x': torch.rand(4, 10, device='meta')})
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tracer_type = TracerType.META
self.proxy_cls = ColoProxy
# Feature flag for proxying accesses to buffer values
proxy_buffer_attributes: bool = True
@ -58,6 +67,12 @@ class ColoTracer(Tracer):
Create a proxy for different kinds of operations.
"""
proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
if self.tracer_type == TracerType.DEFAULT:
# since meta_args is not given
# we just fall back to the original torch.fx.Tracer
return proxy
proxy: ColoProxy
if kind == "placeholder" and target in self.meta_args and self.meta_args[target].is_meta:
@ -168,11 +183,21 @@ class ColoTracer(Tracer):
self.orig_forward = forward
return super().call_module(m, forward, args, kwargs)
def proxy(self, node) -> ColoProxy:
def proxy(self, node) -> Proxy:
"""
Returns a ColoProxy object.
"""
return ColoProxy(node, self)
return self.proxy_cls(node, self)
def _configure_tracer_type(self, tracer_type: TracerType):
if tracer_type == TracerType.DEFAULT:
self.proxy_cls = Proxy
self.tracer_type = TracerType.DEFAULT
elif tracer_type == TracerType.META:
self.proxy_cls = ColoProxy
self.tracer_type = TracerType.META
else:
raise ValueError(f"Unrecognised tracer type {tracer_type}")
def trace(self,
root: nn.Module,
@ -193,6 +218,11 @@ class ColoTracer(Tracer):
if concrete_args is None:
concrete_args = {}
if len(meta_args) == 0:
self._configure_tracer_type(TracerType.DEFAULT)
else:
self._configure_tracer_type(TracerType.META)
# check concrete and meta args have valid names
sig = inspect.signature(root.forward)
sig_names = set(sig.parameters.keys())
@ -235,18 +265,21 @@ class ColoTracer(Tracer):
self.concrete_args = concrete_args
self.meta_args = meta_args
# wrap the torch tensor constructing methods so that they are captured in the graph
self.patched_torch_tensor_methods = {
target: wrap_tensor_constructor_method(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
}
self.patched_torch_tensor_methods = {}
if self.tracer_type == TracerType.META:
# wrap the torch tensor constructing methods so that they are captured in the graph
self.patched_torch_tensor_methods = {
target: wrap_tensor_constructor_method(getattr(torch, target))
for target in self._TORCH_METHODS_TO_PATCH
}
# patch these methods to replace their original use
for name, (wrapper, orig) in self.patched_torch_tensor_methods.items():
setattr(torch, name, wrapper)
# patch these methods to replace their original use
for name, (wrapper, orig) in self.patched_torch_tensor_methods.items():
setattr(torch, name, wrapper)
# cache these methods so that we can detect whether a method call
# should be patched during tracing
self.orig_torch_tensor_methods = [val[1] for val in self.patched_torch_tensor_methods.values()]
# cache these methods so that we can detect whether a method call
# should be patched during tracing
self.orig_torch_tensor_methods = [val[1] for val in self.patched_torch_tensor_methods.values()]
try:
self.graph = super().trace(root, concrete_args=concrete_args)
@ -255,6 +288,9 @@ class ColoTracer(Tracer):
for name, (_, orig) in self.patched_torch_tensor_methods.items():
setattr(torch, name, orig)
if self.tracer_type == TracerType.DEFAULT:
return self.graph
# This is necessary because concrete args are added as input to the traced module since
# https://github.com/pytorch/pytorch/pull/55888.
for node in self.graph.nodes:

View File

@ -1,31 +0,0 @@
import torch
import torch.nn
def test_maxpool():
layer_to_test = dict(maxpool_1d=dict(layer=torch.nn.MaxPool1d, shape=(4, 3, 4)),
maxpool_2d=dict(layer=torch.nn.MaxPool2d, shape=(4, 3, 4, 4)))
for name, info in layer_to_test.items():
data = torch.rand(*info['shape'])
meta_data = data.to('meta')
layer = info['layer'](kernel_size=3)
out = layer(data)
meta_out = layer(meta_data)
assert meta_out.is_meta
assert out.shape == meta_out.shape
def test_avgpool():
layer_to_test = dict(maxpool_1d=dict(layer=torch.nn.AvgPool1d, shape=(4, 3, 4)),
maxpool_2d=dict(layer=torch.nn.AvgPool2d, shape=(4, 3, 4, 4)),
maxpool_3d=dict(layer=torch.nn.AvgPool3d, shape=(4, 3, 4, 4, 4)))
for name, info in layer_to_test.items():
data = torch.rand(*info['shape'])
meta_data = data.to('meta')
layer = info['layer'](kernel_size=3)
out = layer(data)
meta_out = layer(meta_data)
assert meta_out.is_meta
assert out.shape == meta_out.shape

View File

@ -227,31 +227,88 @@ def test_conv3d():
output_shape=materialized_output.shape)
def test_maxpool3d():
pooler = torch.nn.MaxPool3d(kernel_size=3)
def test_pool1d():
combinations = [[torch.nn.MaxPool1d, patched_module.torch_nn_maxpool1d],
[torch.nn.AvgPool1d, patched_module.torch_nn_avgpool1d]]
# test max pool 3d
data = torch.rand(2, 3, 4, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patched_module.torch_nn_maxpool3d,
expect_exception=False,
output_shape=materialized_output.shape)
for (layer_cls, patch_func) in combinations:
pooler = layer_cls(kernel_size=3)
# test max pool 3d
data = torch.rand(2, 3, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patched_module.torch_nn_maxpool3d,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.rand(2, 3, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 3, 4)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patched_module.torch_nn_maxpool3d,
expect_exception=True,
output_shape=None)
data = torch.rand(2, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
data = torch.rand(2, 3, 4, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
def test_pool2d():
combinations = [[torch.nn.MaxPool2d, patched_module.torch_nn_maxpool2d],
[torch.nn.AvgPool2d, patched_module.torch_nn_avgpool2d]]
for (layer_cls, patch_func) in combinations:
pooler = layer_cls(kernel_size=3)
# test max pool 3d
data = torch.rand(2, 3, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 3, 4, 4, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)
def test_pool3d():
combinations = [[torch.nn.MaxPool3d, patched_module.torch_nn_maxpool3d],
[torch.nn.AvgPool3d, patched_module.torch_nn_avgpool3d]]
for (layer_cls, patch_func) in combinations:
pooler = layer_cls(kernel_size=3)
# test max pool 3d
data = torch.rand(2, 3, 4, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 4, 4, 4)
materialized_output = pooler(data)
_assert_output_shape(data=data,
module=pooler,
patch_fn=patch_func,
expect_exception=False,
output_shape=materialized_output.shape)
# test max pool 3d
data = torch.rand(2, 3, 4)
_assert_output_shape(data=data, module=pooler, patch_fn=patch_func, expect_exception=True, output_shape=None)

View File

@ -0,0 +1,46 @@
import torch
import pytest
try:
import torchvision.models as tm
except:
pass
from colossalai.fx import ColoTracer
from torch.fx import GraphModule
@pytest.mark.skip('skip as torchvision is required')
def test_torchvision_models():
MODEL_LIST = [
tm.vgg11, tm.resnet18, tm.densenet121, tm.mobilenet_v3_small, tm.resnext50_32x4d, tm.wide_resnet50_2,
tm.regnet_x_16gf, tm.vit_b_16, tm.convnext_small, tm.mnasnet0_5, tm.efficientnet_b0
]
torch.backends.cudnn.deterministic = True
tracer = ColoTracer()
data = torch.rand(2, 3, 224, 224)
for model_cls in MODEL_LIST:
if model_cls in [tm.convnext_small, tm.efficientnet_b0]:
# remove the impact of randomicity
model = model_cls(stochastic_depth_prob=0)
else:
model = model_cls()
graph = tracer.trace(root=model)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
model.eval()
gm.eval()
with torch.no_grad():
fx_out = gm(data)
non_fx_out = model(data)
assert torch.allclose(
fx_out, non_fx_out), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
if __name__ == '__main__':
test_torchvision_models()