mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
5.5 KiB
181 lines
5.5 KiB
import operator
|
|
import torch
|
|
from .registry import meta_patched_function
|
|
|
|
|
|
@meta_patched_function.register(operator.getitem)
|
|
def operator_getitem(a, b):
|
|
# copied from huggingface.utils.fx
|
|
def to_concrete(t):
|
|
if isinstance(t, torch.Tensor):
|
|
concrete = torch.ones_like(t, device="cpu")
|
|
if concrete.dtype in [torch.float16, torch.float32, torch.float64, torch.int32]:
|
|
concrete = concrete.to(torch.int64)
|
|
return concrete
|
|
return t
|
|
|
|
if isinstance(a, torch.Tensor):
|
|
# TODO: infer shape without performing the computation.
|
|
if isinstance(b, tuple):
|
|
b = tuple(map(to_concrete, b))
|
|
else:
|
|
b = to_concrete(b)
|
|
return operator.getitem(torch.empty_like(a, device="cpu"), b).to("meta")
|
|
return operator.getitem(a, b)
|
|
|
|
|
|
@meta_patched_function.register(torch.matmul)
|
|
def torch_matmul(input, other, *, out=None):
|
|
# copied from huggingface.utils.fx
|
|
d1 = input.dim()
|
|
d2 = other.dim()
|
|
shape = None
|
|
if d1 == 1 and d2 == 1:
|
|
shape = None
|
|
elif d1 == 2 and d2 == 2:
|
|
shape = (input.size(0), other.size(1))
|
|
elif d1 == 1 and d2 == 2:
|
|
shape = (other.size(1),)
|
|
elif d1 == 2 and d1 == 1:
|
|
shape = (input.size(0),)
|
|
else:
|
|
max_length = max(input.dim(), other.dim())
|
|
shape1 = list(input.shape)
|
|
shape2 = list(other.shape)
|
|
if d1 == 1:
|
|
shape1 = [1] + shape1
|
|
if d2 == 1:
|
|
shape2.append(1)
|
|
shape1 = [-1] * (max_length - d1) + list(input.shape)
|
|
shape2 = [-1] * (max_length - d2) + list(other.shape)
|
|
shape = []
|
|
for i in range(max_length):
|
|
shape.append(max(shape1[i], shape2[i]))
|
|
shape[-2] = shape1[-2]
|
|
shape[-1] = shape2[-1]
|
|
if d1 == 1:
|
|
shape.pop(-2)
|
|
if d2 == 1:
|
|
shape.pop(-1)
|
|
if shape is None:
|
|
return torch.tensor(0.0, device="meta")
|
|
return torch.empty(*shape, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.arange)
|
|
def torch_arange(*args, **kwargs):
|
|
n = len(args)
|
|
step = 1
|
|
if n == 1:
|
|
start = 0
|
|
end = args[0]
|
|
elif n == 2:
|
|
start, end = args
|
|
else:
|
|
start, end, step = args
|
|
if isinstance(start, float):
|
|
start = int(start)
|
|
if isinstance(end, float):
|
|
start = int(end)
|
|
if isinstance(step, float):
|
|
step = int(step)
|
|
step = kwargs.get("step", step)
|
|
dtype = kwargs.get("dtype")
|
|
return torch.empty((end - start) // step, dtype=dtype, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.where)
|
|
def torch_where(condition, x, y):
|
|
# torch.where returns the broadcasted tensor of condition, x, and y,
|
|
# so hack it by using addition
|
|
return condition.to(device="meta") + x.to(device="meta") + y.to(device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.abs)
|
|
def torch_abs(input, *, out=None):
|
|
assert out is None, 'out is not supported yet'
|
|
return torch.empty(input.shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.relu)
|
|
def torch_nn_func_relu(input, inplace=False):
|
|
assert not inplace, 'inplace is not supported yet'
|
|
return torch.empty(input.shape, device='meta')
|
|
|
|
|
|
@meta_patched_function.register(torch.Tensor.repeat)
|
|
def torch_tensor_repeat(self, *sizes):
|
|
shape = list(self.shape)
|
|
for i, x in enumerate(sizes):
|
|
shape[i] *= x
|
|
return torch.empty(shape, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.index_select)
|
|
def torch_index_select(input, dim, index, *, out=None):
|
|
shape = list(input.shape)
|
|
shape[dim] = len(index)
|
|
return torch.empty(*shape, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.Tensor.index_select)
|
|
def torch_tensor_index_select(self, dim, index):
|
|
return torch_index_select(self, dim, index)
|
|
|
|
|
|
@meta_patched_function.register(torch.nn.functional.embedding)
|
|
def torch_nn_functional_embedding(input,
|
|
weight,
|
|
padding_idx=None,
|
|
max_norm=None,
|
|
norm_type=2.0,
|
|
scale_grad_by_freq=False,
|
|
sparse=False):
|
|
return torch.empty(*input.shape, weight.shape[-1], device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.bmm)
|
|
def torch_bmm(input, mat2, *, out=None):
|
|
if out is not None:
|
|
raise ValueError("Don't support in-place abs for MetaTensor analysis")
|
|
batch_size, n, m = input.shape
|
|
_, _, p = mat2.shape
|
|
return torch.empty(batch_size, n, p, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.squeeze)
|
|
def torch_squeeze(input, dim=None):
|
|
shape = list(input.shape)
|
|
if dim is not None:
|
|
if dim < 0:
|
|
dim = input.dim() + dim
|
|
if shape[dim] == 1:
|
|
shape.pop(dim)
|
|
else:
|
|
new_shape = []
|
|
for dim_value in shape:
|
|
if dim_value == 1:
|
|
continue
|
|
new_shape.append(dim_value)
|
|
shape = new_shape
|
|
return torch.empty(shape, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.Tensor.squeeze)
|
|
def torch_tensor_squeeze(self, dim=None):
|
|
return torch_squeeze(self, dim)
|
|
|
|
|
|
@meta_patched_function.register(torch.unsqueeze)
|
|
def torch_unsqueeze(input, dim):
|
|
shape = list(input.shape)
|
|
if dim < 0:
|
|
dim = input.dim() + 1 + dim
|
|
shape.insert(dim, 1)
|
|
return torch.empty(shape, device="meta")
|
|
|
|
|
|
@meta_patched_function.register(torch.Tensor.unsqueeze)
|
|
def torch_tensor_unsqueeze(self, dim):
|
|
return torch_unsqueeze(self, dim)
|