|
|
|
@ -1,21 +1,20 @@
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
|
import os, sys, shutil |
|
|
|
|
import os, shutil |
|
|
|
|
import torch |
|
|
|
|
import torch.nn as nn |
|
|
|
|
import pytest |
|
|
|
|
import copy |
|
|
|
|
import operator |
|
|
|
|
import colossalai |
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode |
|
|
|
|
from functools import partial |
|
|
|
|
|
|
|
|
|
import torch.multiprocessing as mp |
|
|
|
|
import torch.distributed as dist |
|
|
|
|
|
|
|
|
|
import colossalai |
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use |
|
|
|
|
from colossalai.utils.cuda import get_current_device |
|
|
|
|
from colossalai.utils import free_port |
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext |
|
|
|
|
from colossalai.tensor import ColoTensorSpec, ComputePattern, ComputeSpec, DistSpecManager, distspec, ProcessGroup, ColoTensor |
|
|
|
|
from colossalai.core import global_context as gpc |
|
|
|
|
from functools import partial |
|
|
|
|
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, distspec, ProcessGroup |
|
|
|
|
from colossalai.nn.parallel.data_parallel import ColoDDP |
|
|
|
|
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint |
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR |
|
|
|
@ -46,15 +45,17 @@ class DummyDataGenerator(ABC):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator): |
|
|
|
|
batch_size = 128 |
|
|
|
|
category = 16 |
|
|
|
|
feature_size = 256 |
|
|
|
|
|
|
|
|
|
def __init__(self, batch_size, category, feature_size, length=10): |
|
|
|
|
super().__init__(length) |
|
|
|
|
self.batch_size = batch_size |
|
|
|
|
self.category = category |
|
|
|
|
self.feature_size = feature_size |
|
|
|
|
|
|
|
|
|
def generate(self): |
|
|
|
|
image_dict = {} |
|
|
|
|
image_dict['pixel_values'] = torch.rand( |
|
|
|
|
DummyDataLoader.batch_size, DummyDataLoader.feature_size, device=get_current_device()) * 2 - 1 |
|
|
|
|
image_dict['label'] = torch.randint(DummyDataLoader.category, (DummyDataLoader.batch_size,), |
|
|
|
|
image_dict['pixel_values'] = torch.rand(self.batch_size, self.feature_size, device=get_current_device()) * 2 - 1 |
|
|
|
|
image_dict['label'] = torch.randint(self.category, (self.batch_size,), |
|
|
|
|
dtype=torch.int64, |
|
|
|
|
device=get_current_device()) |
|
|
|
|
return image_dict |
|
|
|
@ -102,11 +103,15 @@ def remove(path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg): |
|
|
|
|
train_dataloader = DummyDataLoader(length=16) |
|
|
|
|
batch = 3 |
|
|
|
|
feature = 32 |
|
|
|
|
category = 16 |
|
|
|
|
train_dataloader = DummyDataLoader(batch, category, feature, length=16) |
|
|
|
|
with ColoInitContext(device=get_current_device()): |
|
|
|
|
model = MLP(256, 16, 64) |
|
|
|
|
model_reload = MLP(256, 16, 64) |
|
|
|
|
model_ref = MLP(256, 16, 64) |
|
|
|
|
model = MLP(feature, category) |
|
|
|
|
model_reload = MLP(feature, category) |
|
|
|
|
model_ref = MLP(feature, category) |
|
|
|
|
|
|
|
|
|
model = model.cuda() |
|
|
|
|
model_reload = model_reload.cuda() |
|
|
|
|
model_ref = model_ref.cuda() |
|
|
|
|