[util] standard checkpoint function naming (#1377)

pull/1382/head
Frank Lee 2 years ago committed by GitHub
parent 52bc2dc271
commit 0c1a16ea5b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -6,7 +6,7 @@ from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor
from typing import Optional from typing import Optional
def save_checkpoint(dire: str, def save_checkpoint(path: str,
epoch: int, epoch: int,
model: torch.nn.Module, model: torch.nn.Module,
optimizer: Optional[ColossalaiOptimizer] = None, optimizer: Optional[ColossalaiOptimizer] = None,
@ -16,7 +16,7 @@ def save_checkpoint(dire: str,
"""save_checkpoint """save_checkpoint
save a model, whose parameters are `ColoTensor`s. save a model, whose parameters are `ColoTensor`s.
Args: Args:
dire (str): directory to save the checkpoint files. path (str): directory to save the checkpoint files.
epoch (int): the number of epoch epoch (int): the number of epoch
model (torch.nn.Module): a torch module initialized by ColoInitContext model (torch.nn.Module): a torch module initialized by ColoInitContext
optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None. optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None.
@ -39,7 +39,7 @@ def save_checkpoint(dire: str,
delattr(v, 'save_ready') delattr(v, 'save_ready')
# model saving # model saving
save_state = {'epoch': epoch, 'model': model_state} save_state = {'epoch': epoch, 'model': model_state}
torch.save(save_state, dire + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) torch.save(save_state, path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs)
# delete old dicts # delete old dicts
del model_state del model_state
@ -57,7 +57,7 @@ def save_checkpoint(dire: str,
if rank == 0: if rank == 0:
save_state = {'epoch': epoch, 'optim': optim_state} save_state = {'epoch': epoch, 'optim': optim_state}
torch.save(save_state, dire + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) torch.save(save_state, path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs)
# recover colo tensors in rank0 # recover colo tensors in rank0
for k, v in optimizer.state_dict()['state'].items(): for k, v in optimizer.state_dict()['state'].items():
for n, t in v.items(): for n, t in v.items():
@ -71,7 +71,7 @@ def save_checkpoint(dire: str,
dist.barrier() dist.barrier()
def load_checkpoint(dire, def load_checkpoint(path,
epoch: int, epoch: int,
model: torch.nn.Module, model: torch.nn.Module,
optimizer: Optional[ColossalaiOptimizer] = None, optimizer: Optional[ColossalaiOptimizer] = None,
@ -81,7 +81,7 @@ def load_checkpoint(dire,
"""load_checkpoint """load_checkpoint
load a model, whose parameters are `ColoTensor`s. load a model, whose parameters are `ColoTensor`s.
Args: Args:
dire (_type_): _description_ path (_type_): _description_
epoch (int): _description_ epoch (int): _description_
rank (int): _description_ rank (int): _description_
model (torch.nn.Module): _description_ model (torch.nn.Module): _description_
@ -96,7 +96,7 @@ def load_checkpoint(dire,
gather_tensor(p) gather_tensor(p)
if rank == 0: if rank == 0:
load_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs)
model.load_state_dict(load_state['model']) model.load_state_dict(load_state['model'])
dist.barrier() dist.barrier()
@ -118,7 +118,7 @@ def load_checkpoint(dire,
gather_tensor(t) gather_tensor(t)
if rank == 0: if rank == 0:
colo_checkpoint = torch.load(dire + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs)
optimizer.load_state_dict(colo_checkpoint['optim']) optimizer.load_state_dict(colo_checkpoint['optim'])
dist.barrier() dist.barrier()

Loading…
Cancel
Save