From 0c1a16ea5b1452e4c81ce8ed17613f1761f4db21 Mon Sep 17 00:00:00 2001 From: Frank Lee Date: Thu, 28 Jul 2022 09:29:30 +0800 Subject: [PATCH] [util] standard checkpoint function naming (#1377) --- colossalai/utils/checkpoint/module_checkpoint.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/colossalai/utils/checkpoint/module_checkpoint.py b/colossalai/utils/checkpoint/module_checkpoint.py index 43c518394..dc01b3b54 100644 --- a/colossalai/utils/checkpoint/module_checkpoint.py +++ b/colossalai/utils/checkpoint/module_checkpoint.py @@ -6,7 +6,7 @@ from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor from typing import Optional -def save_checkpoint(dire: str, +def save_checkpoint(path: str, epoch: int, model: torch.nn.Module, optimizer: Optional[ColossalaiOptimizer] = None, @@ -16,7 +16,7 @@ def save_checkpoint(dire: str, """save_checkpoint save a model, whose parameters are `ColoTensor`s. Args: - dire (str): directory to save the checkpoint files. + path (str): directory to save the checkpoint files. epoch (int): the number of epoch model (torch.nn.Module): a torch module initialized by ColoInitContext optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None. @@ -39,7 +39,7 @@ def save_checkpoint(dire: str, delattr(v, 'save_ready') # model saving save_state = {'epoch': epoch, 'model': model_state} - torch.save(save_state, dire + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) + torch.save(save_state, path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) # delete old dicts del model_state @@ -57,7 +57,7 @@ def save_checkpoint(dire: str, if rank == 0: save_state = {'epoch': epoch, 'optim': optim_state} - torch.save(save_state, dire + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) + torch.save(save_state, path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) # recover colo tensors in rank0 for k, v in optimizer.state_dict()['state'].items(): for n, t in v.items(): @@ -71,7 +71,7 @@ def save_checkpoint(dire: str, dist.barrier() -def load_checkpoint(dire, +def load_checkpoint(path, epoch: int, model: torch.nn.Module, optimizer: Optional[ColossalaiOptimizer] = None, @@ -81,7 +81,7 @@ def load_checkpoint(dire, """load_checkpoint load a model, whose parameters are `ColoTensor`s. Args: - dire (_type_): _description_ + path (_type_): _description_ epoch (int): _description_ rank (int): _description_ model (torch.nn.Module): _description_ @@ -96,7 +96,7 @@ def load_checkpoint(dire, gather_tensor(p) if rank == 0: - load_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) + load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) model.load_state_dict(load_state['model']) dist.barrier() @@ -118,7 +118,7 @@ def load_checkpoint(dire, gather_tensor(t) if rank == 0: - colo_checkpoint = torch.load(dire + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) + colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) optimizer.load_state_dict(colo_checkpoint['optim']) dist.barrier()