2023-04-04 07:30:01 +00:00
|
|
|
from typing import Any, Optional
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.optim as optim
|
2023-04-27 10:41:49 +00:00
|
|
|
from coati.models.base import get_base_model
|
2023-03-28 12:25:36 +00:00
|
|
|
from coati.replay_buffer import ReplayBuffer
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.utils.data import DataLoader
|
2023-04-27 10:41:49 +00:00
|
|
|
from transformers.modeling_utils import PreTrainedModel
|
2023-04-04 07:30:01 +00:00
|
|
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
from .base import Strategy
|
|
|
|
|
|
|
|
|
|
|
|
class NaiveStrategy(Strategy):
|
|
|
|
"""
|
|
|
|
Strategy for single GPU. No parallelism is used.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
|
|
|
|
loss.backward()
|
|
|
|
|
|
|
|
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
def setup_distributed(self) -> None:
|
|
|
|
pass
|
|
|
|
|
|
|
|
def setup_model(self, model: nn.Module) -> nn.Module:
|
|
|
|
return model
|
|
|
|
|
|
|
|
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
|
|
|
|
return DataLoader(replay_buffer,
|
|
|
|
batch_size=replay_buffer.sample_batch_size,
|
|
|
|
shuffle=True,
|
|
|
|
drop_last=True,
|
|
|
|
pin_memory=pin_memory,
|
|
|
|
collate_fn=replay_buffer.collate_fn)
|
|
|
|
|
2023-04-27 10:41:49 +00:00
|
|
|
def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None:
|
|
|
|
base_model = get_base_model(model)
|
|
|
|
state_dict = base_model.state_dict()
|
|
|
|
torch.save(state_dict, path)
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
|
2023-04-27 10:41:49 +00:00
|
|
|
base_model = get_base_model(model)
|
2023-03-28 12:25:36 +00:00
|
|
|
state_dict = torch.load(path, map_location=map_location)
|
2023-04-27 10:41:49 +00:00
|
|
|
base_model.load_state_dict(state_dict, strict=strict)
|
2023-03-28 12:25:36 +00:00
|
|
|
|
|
|
|
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
|
|
|
|
torch.save(optimizer.state_dict(), path)
|
|
|
|
|
|
|
|
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
|
|
|
|
state_dict = torch.load(path, map_location=map_location)
|
|
|
|
optimizer.load_state_dict(state_dict)
|
2023-04-27 10:41:49 +00:00
|
|
|
|
|
|
|
def save_pretrained(self,
|
|
|
|
model: nn.Module,
|
|
|
|
path: str,
|
|
|
|
only_rank0: bool = True,
|
|
|
|
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
|
|
|
|
unwrapped_model = self.unwrap_model(model)
|
|
|
|
assert isinstance(unwrapped_model, PreTrainedModel)
|
|
|
|
unwrapped_model.save_pretrained(path)
|
|
|
|
if tokenizer is not None:
|
|
|
|
tokenizer.save_pretrained(path)
|