from typing import Any, Optional import torch import torch.nn as nn import torch.optim as optim from coati.models.base import get_base_model from coati.replay_buffer import ReplayBuffer from torch.optim import Optimizer from torch.utils.data import DataLoader from transformers.modeling_utils import PreTrainedModel from transformers.tokenization_utils_base import PreTrainedTokenizerBase from .base import Strategy class NaiveStrategy(Strategy): """ Strategy for single GPU. No parallelism is used. """ def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None: loss.backward() def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None: optimizer.step() def setup_distributed(self) -> None: pass def setup_model(self, model: nn.Module) -> nn.Module: return model def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer: return optimizer def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader: return DataLoader(replay_buffer, batch_size=replay_buffer.sample_batch_size, shuffle=True, drop_last=True, pin_memory=pin_memory, collate_fn=replay_buffer.collate_fn) def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None: base_model = get_base_model(model) state_dict = base_model.state_dict() torch.save(state_dict, path) def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None: base_model = get_base_model(model) state_dict = torch.load(path, map_location=map_location) base_model.load_state_dict(state_dict, strict=strict) def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None: torch.save(optimizer.state_dict(), path) def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None: state_dict = torch.load(path, map_location=map_location) optimizer.load_state_dict(state_dict) def save_pretrained(self, model: nn.Module, path: str, only_rank0: bool = True, tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None: unwrapped_model = self.unwrap_model(model) assert isinstance(unwrapped_model, PreTrainedModel) unwrapped_model.save_pretrained(path) if tokenizer is not None: tokenizer.save_pretrained(path)