2022-06-29 10:58:38 +00:00
|
|
|
import math
|
2022-06-29 07:05:25 +00:00
|
|
|
import torch
|
2022-07-12 07:01:58 +00:00
|
|
|
from ..registry import meta_patched_module
|
2022-07-04 07:21:26 +00:00
|
|
|
|
|
|
|
|
2022-07-06 13:37:56 +00:00
|
|
|
@meta_patched_module.register(torch.nn.AvgPool1d)
|
|
|
|
def torch_nn_avgpool1d(self, input):
|
|
|
|
num_dim = input.dim()
|
|
|
|
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
|
|
|
|
|
|
|
|
l_in = input.shape[-1]
|
|
|
|
|
|
|
|
def _convert_int_to_list(item):
|
|
|
|
if isinstance(item, int):
|
|
|
|
return [item] * 1
|
|
|
|
else:
|
|
|
|
return item
|
|
|
|
|
|
|
|
padding = _convert_int_to_list(self.padding)
|
|
|
|
kernel_size = _convert_int_to_list(self.kernel_size)
|
|
|
|
stride = _convert_int_to_list(self.stride)
|
|
|
|
|
|
|
|
l_out = math.floor((l_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
|
|
|
|
2022-08-25 01:05:07 +00:00
|
|
|
result_shape = tuple(input.shape[:-1]) + (l_out,)
|
2022-07-06 13:37:56 +00:00
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
|
|
|
@meta_patched_module.register(torch.nn.AvgPool2d)
|
|
|
|
def torch_nn_avgpool2d(self, input):
|
|
|
|
num_dim = input.dim()
|
|
|
|
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
|
|
|
|
|
|
|
|
h_in, w_in = input.shape[-2:]
|
|
|
|
|
|
|
|
def _convert_int_to_list(item):
|
|
|
|
if isinstance(item, int):
|
|
|
|
return [item] * 2
|
|
|
|
else:
|
|
|
|
return item
|
|
|
|
|
|
|
|
padding = _convert_int_to_list(self.padding)
|
|
|
|
kernel_size = _convert_int_to_list(self.kernel_size)
|
|
|
|
stride = _convert_int_to_list(self.stride)
|
|
|
|
|
|
|
|
h_out = math.floor((h_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
|
|
|
w_out = math.floor((w_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1)
|
|
|
|
|
2022-08-25 01:05:07 +00:00
|
|
|
result_shape = tuple(input.shape[:-2]) + (
|
2022-07-06 13:37:56 +00:00
|
|
|
h_out,
|
|
|
|
w_out,
|
|
|
|
)
|
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
|
|
|
@meta_patched_module.register(torch.nn.AvgPool3d)
|
|
|
|
def torch_nn_avgpool3d(self, input):
|
|
|
|
num_dim = input.dim()
|
|
|
|
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
|
|
|
|
|
|
|
|
d_in, h_in, w_in = input.shape[-3:]
|
|
|
|
|
|
|
|
def _convert_int_to_list(item):
|
|
|
|
if isinstance(item, int):
|
|
|
|
return [item] * 3
|
|
|
|
else:
|
|
|
|
return item
|
|
|
|
|
|
|
|
padding = _convert_int_to_list(self.padding)
|
|
|
|
kernel_size = _convert_int_to_list(self.kernel_size)
|
|
|
|
stride = _convert_int_to_list(self.stride)
|
|
|
|
|
|
|
|
d_out = math.floor((d_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
|
|
|
h_out = math.floor((h_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1)
|
|
|
|
w_out = math.floor((w_in + 2 * padding[2] - kernel_size[2]) / stride[2] + 1)
|
|
|
|
|
2022-08-25 01:05:07 +00:00
|
|
|
result_shape = tuple(input.shape[:-3]) + (
|
2022-07-06 13:37:56 +00:00
|
|
|
d_out,
|
|
|
|
h_out,
|
|
|
|
w_out,
|
|
|
|
)
|
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
|
|
|
@meta_patched_module.register(torch.nn.MaxPool1d)
|
|
|
|
def torch_nn_maxpool1d(self, input):
|
|
|
|
num_dim = input.dim()
|
|
|
|
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
|
|
|
|
|
|
|
|
l_in = input.shape[-1]
|
|
|
|
|
|
|
|
def _convert_int_to_list(item):
|
|
|
|
if isinstance(item, int):
|
|
|
|
return [item] * 1
|
|
|
|
else:
|
|
|
|
return item
|
|
|
|
|
|
|
|
padding = _convert_int_to_list(self.padding)
|
|
|
|
dilation = _convert_int_to_list(self.dilation)
|
|
|
|
kernel_size = _convert_int_to_list(self.kernel_size)
|
|
|
|
stride = _convert_int_to_list(self.stride)
|
|
|
|
|
|
|
|
l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
|
|
|
|
2022-08-25 01:05:07 +00:00
|
|
|
result_shape = tuple(input.shape[:-1]) + (l_out,)
|
2022-07-06 13:37:56 +00:00
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
|
|
|
@meta_patched_module.register(torch.nn.MaxPool2d)
|
|
|
|
def torch_nn_maxpool2d(self, input):
|
|
|
|
num_dim = input.dim()
|
|
|
|
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
|
|
|
|
|
|
|
|
h_in, w_in = input.shape[-2:]
|
|
|
|
|
|
|
|
def _convert_int_to_list(item):
|
|
|
|
if isinstance(item, int):
|
|
|
|
return [item] * 2
|
|
|
|
else:
|
|
|
|
return item
|
|
|
|
|
|
|
|
padding = _convert_int_to_list(self.padding)
|
|
|
|
dilation = _convert_int_to_list(self.dilation)
|
|
|
|
kernel_size = _convert_int_to_list(self.kernel_size)
|
|
|
|
stride = _convert_int_to_list(self.stride)
|
|
|
|
|
|
|
|
h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
|
|
|
w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
|
|
|
|
2022-08-25 01:05:07 +00:00
|
|
|
result_shape = tuple(input.shape[:-2]) + (
|
2022-07-06 13:37:56 +00:00
|
|
|
h_out,
|
|
|
|
w_out,
|
|
|
|
)
|
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
2022-07-04 07:21:26 +00:00
|
|
|
@meta_patched_module.register(torch.nn.MaxPool3d)
|
|
|
|
def torch_nn_maxpool3d(self, input):
|
|
|
|
num_dim = input.dim()
|
|
|
|
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
|
|
|
|
|
|
|
|
d_in, h_in, w_in = input.shape[-3:]
|
|
|
|
|
|
|
|
def _convert_int_to_list(item):
|
|
|
|
if isinstance(item, int):
|
|
|
|
return [item] * 3
|
|
|
|
else:
|
|
|
|
return item
|
|
|
|
|
|
|
|
padding = _convert_int_to_list(self.padding)
|
|
|
|
dilation = _convert_int_to_list(self.dilation)
|
|
|
|
kernel_size = _convert_int_to_list(self.kernel_size)
|
|
|
|
stride = _convert_int_to_list(self.stride)
|
|
|
|
|
|
|
|
d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
|
|
|
h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
|
|
|
w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1)
|
|
|
|
|
2022-08-25 01:05:07 +00:00
|
|
|
result_shape = tuple(input.shape[:-3]) + (
|
2022-07-04 07:21:26 +00:00
|
|
|
d_out,
|
|
|
|
h_out,
|
|
|
|
w_out,
|
|
|
|
)
|
|
|
|
return torch.empty(result_shape, device='meta')
|
2022-07-06 07:11:08 +00:00
|
|
|
|
|
|
|
|
2022-07-07 07:20:13 +00:00
|
|
|
@meta_patched_module.register(torch.nn.AdaptiveAvgPool1d)
|
|
|
|
@meta_patched_module.register(torch.nn.AdaptiveMaxPool1d)
|
|
|
|
def torch_nn_adapative_pooling_1d(self, input):
|
2022-08-25 01:05:07 +00:00
|
|
|
assert input.dim() in [2, 3]
|
|
|
|
if isinstance(self.output_size, int):
|
|
|
|
output_size = (self.output_size,)
|
|
|
|
else:
|
|
|
|
output_size = self.output_size
|
|
|
|
result_shape = tuple(input.shape[:-1]) + output_size
|
2022-07-07 07:20:13 +00:00
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
|
|
|
@meta_patched_module.register(torch.nn.AdaptiveAvgPool2d)
|
|
|
|
@meta_patched_module.register(torch.nn.AdaptiveMaxPool2d)
|
|
|
|
def torch_nn_adapative_pooling_2d(self, input):
|
2022-08-25 01:05:07 +00:00
|
|
|
assert input.dim() in [3, 4]
|
|
|
|
if isinstance(self.output_size, int):
|
|
|
|
output_size = (self.output_size,) * 2
|
|
|
|
else:
|
|
|
|
output_size = self.output_size
|
|
|
|
result_shape = tuple(input.shape[:-2]) + output_size
|
2022-07-07 07:20:13 +00:00
|
|
|
return torch.empty(result_shape, device='meta')
|
|
|
|
|
|
|
|
|
|
|
|
@meta_patched_module.register(torch.nn.AdaptiveAvgPool3d)
|
|
|
|
@meta_patched_module.register(torch.nn.AdaptiveMaxPool3d)
|
|
|
|
def torch_nn_adapative_pooling_3d(self, input):
|
2022-08-25 01:05:07 +00:00
|
|
|
assert input.dim() in [4, 5]
|
|
|
|
if isinstance(self.output_size, int):
|
|
|
|
output_size = (self.output_size,) * 3
|
|
|
|
else:
|
|
|
|
output_size = self.output_size
|
|
|
|
result_shape = tuple(input.shape[:-3]) + output_size
|
|
|
|
return torch.empty(result_shape, device='meta')
|