mirror of https://github.com/hpcaitech/ColossalAI
[fx] added module patch for pooling layers (#1197)
parent
23442a5bc1
commit
abf6a262dc
|
@ -1,4 +1,3 @@
|
|||
from sys import meta_path
|
||||
from .registry import *
|
||||
from .patched_function import *
|
||||
from .patched_module import *
|
||||
|
|
|
@ -86,3 +86,33 @@ def torch_nn_conv3d(self, input):
|
|||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool3d)
|
||||
def torch_nn_maxpool3d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
|
||||
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
|
||||
def _convert_int_to_list(item):
|
||||
if isinstance(item, int):
|
||||
return [item] * 3
|
||||
else:
|
||||
return item
|
||||
|
||||
padding = _convert_int_to_list(self.padding)
|
||||
dilation = _convert_int_to_list(self.dilation)
|
||||
kernel_size = _convert_int_to_list(self.kernel_size)
|
||||
stride = _convert_int_to_list(self.stride)
|
||||
|
||||
d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
||||
w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1)
|
||||
|
||||
result_shape = input.shape[:-3] + (
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
import torch
|
||||
import torch.nn
|
||||
|
||||
|
||||
def test_maxpool():
|
||||
layer_to_test = dict(maxpool_1d=dict(layer=torch.nn.MaxPool1d, shape=(4, 3, 4)),
|
||||
maxpool_2d=dict(layer=torch.nn.MaxPool2d, shape=(4, 3, 4, 4)))
|
||||
|
||||
for name, info in layer_to_test.items():
|
||||
data = torch.rand(*info['shape'])
|
||||
meta_data = data.to('meta')
|
||||
layer = info['layer'](kernel_size=3)
|
||||
out = layer(data)
|
||||
meta_out = layer(meta_data)
|
||||
assert meta_out.is_meta
|
||||
assert out.shape == meta_out.shape
|
||||
|
||||
|
||||
def test_avgpool():
|
||||
layer_to_test = dict(maxpool_1d=dict(layer=torch.nn.AvgPool1d, shape=(4, 3, 4)),
|
||||
maxpool_2d=dict(layer=torch.nn.AvgPool2d, shape=(4, 3, 4, 4)),
|
||||
maxpool_3d=dict(layer=torch.nn.AvgPool3d, shape=(4, 3, 4, 4, 4)))
|
||||
|
||||
for name, info in layer_to_test.items():
|
||||
data = torch.rand(*info['shape'])
|
||||
meta_data = data.to('meta')
|
||||
layer = info['layer'](kernel_size=3)
|
||||
out = layer(data)
|
||||
meta_out = layer(meta_data)
|
||||
assert meta_out.is_meta
|
||||
assert out.shape == meta_out.shape
|
|
@ -225,3 +225,33 @@ def test_conv3d():
|
|||
patch_fn=patched_module.torch_nn_conv3d,
|
||||
expect_exception=False,
|
||||
output_shape=materialized_output.shape)
|
||||
|
||||
|
||||
def test_maxpool3d():
|
||||
pooler = torch.nn.MaxPool3d(kernel_size=3)
|
||||
|
||||
# test max pool 3d
|
||||
data = torch.rand(2, 3, 4, 4, 4)
|
||||
materialized_output = pooler(data)
|
||||
_assert_output_shape(data=data,
|
||||
module=pooler,
|
||||
patch_fn=patched_module.torch_nn_maxpool3d,
|
||||
expect_exception=False,
|
||||
output_shape=materialized_output.shape)
|
||||
|
||||
# test max pool 3d
|
||||
data = torch.rand(2, 3, 4, 4)
|
||||
materialized_output = pooler(data)
|
||||
_assert_output_shape(data=data,
|
||||
module=pooler,
|
||||
patch_fn=patched_module.torch_nn_maxpool3d,
|
||||
expect_exception=False,
|
||||
output_shape=materialized_output.shape)
|
||||
|
||||
# test max pool 3d
|
||||
data = torch.rand(2, 3, 4)
|
||||
_assert_output_shape(data=data,
|
||||
module=pooler,
|
||||
patch_fn=patched_module.torch_nn_maxpool3d,
|
||||
expect_exception=True,
|
||||
output_shape=None)
|
||||
|
|
Loading…
Reference in New Issue