ColossalAI/applications/Chat/coati/trainer/strategies/colossalai.py

198 lines
9.7 KiB
Python
Raw Normal View History

2023-03-28 12:25:36 +00:00
import warnings
from typing import Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.optim import Optimizer
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
import colossalai
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import CPUAdam, HybridAdam
from colossalai.tensor import ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext, ZeroDDP, zero_model_wrapper, zero_optim_wrapper
2023-03-28 12:25:36 +00:00
from .ddp import DDPStrategy
logger = get_dist_logger(__name__)
2023-03-28 12:25:36 +00:00
class ColossalAIStrategy(DDPStrategy):
"""
The strategy for training with ColossalAI.
Args:
stage(int): The stage to use in ZeRO. Choose in (1, 2, 3)
precision(str): The precision to use. Choose in ('fp32', 'fp16'). Stage 3 only supports fp16.
seed(int): The seed for the random number generator.
shard_init(bool): Whether to shard the model parameters during initialization. Only for ZeRO-3.
This is not compativle with `from_pretrained()`. We temporarily disable this and will support it in the future.
placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda')
If it is cpu, parameters, gradients and optimizer states will be offloaded to CPU,
If it is cuda, they will not be offloaded, which means max CUDA memory will be used. It is the fastest.
pin_memory(bool): Whether to pin the memory for the data loader. Only for ZeRO-3.
force_outputs_fp32(bool): Whether to force the outputs to be fp32. Only for ZeRO-3.
search_range_mb(int): The search range in MB for the chunk size. Only for ZeRO-3.
hidden_dim(optional, int): The hidden dimension for the gemini. Only for ZeRO-3.
min_chunk_size_mb(float): The minimum chunk size in MB. Only for ZeRO-3.
gpu_margin_mem_ratio(float): The margin memory ratio for the GPU. Only for ZeRO-3.
reduce_bugket_size(int): The reduce bucket size in bytes. Only for ZeRO-1 and ZeRO-2.
overlap_communication(bool): Whether to overlap communication and computation. Only for ZeRO-1 and ZeRO-2.
initial_scale(float): The initial scale for the optimizer.
growth_factor(float): The growth factor for the optimizer.
backoff_factor(float): The backoff factor for the optimizer.
growth_interval(int): The growth interval for the optimizer.
hysteresis(int): The hysteresis for the optimizer.
min_scale(float): The minimum scale for the optimizer.
max_scale(float): The maximum scale for the optimizer.
max_norm(float): The maximum norm for the optimizer.
norm_type(float): The norm type for the optimizer.
"""
def __init__(
self,
stage: int = 3,
precision: str = 'fp16',
seed: int = 42,
shard_init: bool = False, # only for stage 3
placement_policy: str = 'cuda',
pin_memory: bool = True, # only for stage 3
force_outputs_fp32: bool = False, # only for stage 3
scatter_after_inference: bool = False, # only for stage 3
2023-03-28 12:25:36 +00:00
search_range_mb: int = 32, # only for stage 3
hidden_dim: Optional[int] = None, # only for stage 3
min_chunk_size_mb: float = 32, # only for stage 3
gpu_margin_mem_ratio: float = 0.0, # only for stage 3
reduce_bucket_size: int = 12 * 1024**2, # only for stage 1&2
overlap_communication: bool = True, # only for stage 1&2
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
min_scale: float = 1,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0) -> None:
super().__init__(seed)
assert placement_policy in ('cpu', 'cuda'), f'Unsupported placement policy "{placement_policy}"'
assert precision in ('fp32', 'fp16'), f'Unsupported precision "{precision}"'
self.stage = stage
# TODO(ver217): support shard_init when using from_pretrained()
if shard_init:
warnings.warn(
f'Shard init is not supported model.from_pretrained() yet. Please load weights after strategy.prepare()'
)
if stage == 3 and precision == 'fp32':
warnings.warn(f'Stage 3 only supports fp16. Precision is set to fp16.')
precision = 'fp16'
self.precision = precision
self.shard_init = shard_init
self.gemini_config = dict(device=get_current_device(),
placement_policy=placement_policy,
pin_memory=pin_memory,
force_outputs_fp32=force_outputs_fp32,
strict_ddp_mode=shard_init,
search_range_mb=search_range_mb,
hidden_dim=hidden_dim,
min_chunk_size_mb=min_chunk_size_mb,
scatter_after_inference=scatter_after_inference)
2023-03-28 12:25:36 +00:00
if stage == 3:
self.zero_optim_config = dict(gpu_margin_mem_ratio=gpu_margin_mem_ratio)
else:
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size,
overlap_communication=overlap_communication,
cpu_offload=(placement_policy == 'cpu'))
self.optim_kwargs = dict(initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
max_norm=max_norm,
norm_type=norm_type)
def setup_distributed(self) -> None:
colossalai.launch_from_torch({}, seed=self.seed)
def model_init_context(self):
if self.stage == 3:
world_size = dist.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if self.shard_init else None
default_dist_spec = ShardSpec([-1], [world_size]) if self.shard_init else None
return ColoInitContext(device=get_current_device(),
dtype=torch.half,
default_pg=shard_pg,
default_dist_spec=default_dist_spec)
return super().model_init_context()
def setup_model(self, model: nn.Module) -> nn.Module:
model = zero_model_wrapper(model, zero_stage=self.stage, gemini_config=self.gemini_config)
if self.stage != 3 and self.precision == 'fp16':
model = model.half().cuda()
2023-03-28 12:25:36 +00:00
return model
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
assert isinstance(optimizer, (CPUAdam, HybridAdam)), f'Unsupported optimizer {type(optimizer)}'
return zero_optim_wrapper(model, optimizer, optim_config=self.zero_optim_config, **self.optim_kwargs)
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.backward(loss)
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.step()
def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None:
if only_rank0 and dist.get_rank() != 0 and self.stage != 3:
return
if self.stage == 3:
assert isinstance(model, ZeroDDP)
# for stage 3, state_dict() method should be called on every rank
state_dict = model.state_dict(only_rank_0=only_rank0)
2023-03-28 12:25:36 +00:00
else:
# only_rank0 is false or rank == 0
state_dict = model.state_dict()
if only_rank0 and dist.get_rank() != 0:
return
torch.save(state_dict, path)
2023-03-28 12:25:36 +00:00
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
if only_rank0:
raise RuntimeError(
f'Optimizer states are sharded when using ColossalAIStrategy. Only rank0 is not supported.')
torch.save(optimizer.state_dict(), path)
def unwrap_model(self, model: nn.Module) -> nn.Module:
if self.stage == 3:
assert isinstance(model, ZeroDDP)
return model.module
return model
def save_pretrained(self,
model: nn.Module,
path: str,
only_rank0: bool = True,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
if self.stage == 3:
raise RuntimeError('ColossalAI strategy with stage-3 does not support save_pretrained() now')
super().save_pretrained(model, path, only_rank0, tokenizer)
[chat] add distributed PPO trainer (#3740) * Detached ppo (#9) * run the base * working on dist ppo * sync * detached trainer * update detached trainer. no maker update function * facing init problem * 1 maker 1 trainer detached run. but no model update * facing cuda problem * fix save functions * verified maker update * nothing * add ignore * analyize loss issue * remove some debug codes * facing 2m1t stuck issue * 2m1t verified * do not use torchrun * working on 2m2t * working on 2m2t * initialize strategy in ray actor env * facing actor's init order issue * facing ddp model update issue (need unwarp ddp) * unwrap ddp actor * checking 1m2t stuck problem * nothing * set timeout for trainer choosing. It solves the stuck problem! * delete some debug output * rename to sync with upstream * rename to sync with upstream * coati rename * nothing * I am going to detach the replaybuffer from trainer and make it a Ray Actor. Two benefits: 1. support TP trainer. 2. asynchronized buffer operations * experience_maker_holder performs target-revolving _send_experience() instead of length comparison. * move code to ray subfolder * working on pipeline inference * apply comments * working on pipeline strategy. in progress. * remove pipeline code. clean this branch * update remote parameters by state_dict. no test * nothing * state_dict sharding transfer * merge debug branch * gemini _unwrap_model fix * simplify code * simplify code & fix LoRALinear AttributeError * critic unwrapped state_dict --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] add perfomance evaluator and fix bugs (#10) * [chat] add performance evaluator for ray * [chat] refactor debug arg * [chat] support hf config * [chat] fix generation * [chat] add 1mmt dummy example * [chat] fix gemini ckpt * split experience to send (#11) Co-authored-by: csric <richcsr256@gmail.com> * [chat] refactor trainer and maker (#12) * [chat] refactor experience maker holder * [chat] refactor model init * [chat] refactor trainer args * [chat] refactor model init * [chat] refactor trainer * [chat] refactor experience sending logic and training loop args (#13) * [chat] refactor experience send logic * [chat] refactor trainer * [chat] refactor trainer * [chat] refactor experience maker * [chat] refactor pbar * [chat] refactor example folder (#14) * [chat] support quant (#15) * [chat] add quant * [chat] add quant example * prompt example (#16) * prompt example * prompt load csv data * remove legacy try --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] add mmmt dummy example and refactor experience sending (#17) * [chat] add mmmt dummy example * [chat] refactor naive strategy * [chat] fix struck problem * [chat] fix naive strategy * [chat] optimize experience maker sending logic * [chat] refactor sending assignment * [chat] refactor performance evaluator (#18) * Prompt Example & requires_grad state_dict & sharding state_dict (#19) * prompt example * prompt load csv data * remove legacy try * maker models require_grad set to False * working on zero redundancy update * mmmt_prompt example; naive strategy requires_grad state_dict & sharding; maker model requires_no_grad. * remove legacy examples * remove legacy examples * remove replay buffer tp state. bad design --------- Co-authored-by: csric <richcsr256@gmail.com> * state_dict sending adapts to new unwrap function (#20) * prompt example * prompt load csv data * remove legacy try * maker models require_grad set to False * working on zero redundancy update * mmmt_prompt example; naive strategy requires_grad state_dict & sharding; maker model requires_no_grad. * remove legacy examples * remove legacy examples * remove replay buffer tp state. bad design * opt benchmark * better script * nothing * [chat] strategy refactor unwrap model * [chat] strategy refactor save model * [chat] add docstr * [chat] refactor trainer save model * [chat] fix strategy typing * [chat] refactor trainer save model * [chat] update readme * [chat] fix unit test * working on lora reconstruction * state_dict sending adapts to new unwrap function * remove comments --------- Co-authored-by: csric <richcsr256@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * [chat-ray] add readme (#21) * add readme * transparent graph * add note background --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] get images from url (#22) * Refactor/chat ray (#23) * [chat] lora add todo * [chat] remove unused pipeline strategy * [chat] refactor example structure * [chat] setup ci for ray * [chat-ray] Support LoRA trainer. LoRA weights reconstruction. (#24) * lora support prototype * lora support * 1mmt lora & remove useless code --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] fix test ci for ray * [chat] fix test ci requirements for ray * [chat] fix ray runtime env * [chat] fix ray runtime env * [chat] fix example ci docker args * [chat] add debug info in trainer * [chat] add nccl debug info * [chat] skip ray test * [doc] fix typo --------- Co-authored-by: csric <59389055+CsRic@users.noreply.github.com> Co-authored-by: csric <richcsr256@gmail.com>
2023-06-07 02:41:16 +00:00
def get_model_state_dict_shard(self, model: nn.Module, **config):
if self.stage != 3:
yield from super().get_model_state_dict_shard(model, **config)
else:
# unwrapped_model = self._unwrap_model(model)
# for module in unwrapped_model.modules():
# if isinstance(module, LoraLinear):
# module.merge_weights = True
# module.eval()
assert isinstance(model, ZeroDDP)
yield from model.state_dict_shard(max_shard_size=1024, only_rank_0=False)