ColossalAI/applications/Chat/coati/trainer/strategies/colossalai.py

189 lines
9.3 KiB
Python
Raw Normal View History

2023-03-28 12:25:36 +00:00
import warnings
from typing import Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from coati.models.base import get_base_model
2023-03-28 12:25:36 +00:00
from torch.optim import Optimizer
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
import colossalai
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import CPUAdam, HybridAdam
from colossalai.tensor import ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext, ZeroDDP, zero_model_wrapper, zero_optim_wrapper
2023-03-28 12:25:36 +00:00
from .ddp import DDPStrategy
logger = get_dist_logger(__name__)
2023-03-28 12:25:36 +00:00
class ColossalAIStrategy(DDPStrategy):
"""
The strategy for training with ColossalAI.
Args:
stage(int): The stage to use in ZeRO. Choose in (1, 2, 3)
precision(str): The precision to use. Choose in ('fp32', 'fp16'). Stage 3 only supports fp16.
seed(int): The seed for the random number generator.
shard_init(bool): Whether to shard the model parameters during initialization. Only for ZeRO-3.
This is not compativle with `from_pretrained()`. We temporarily disable this and will support it in the future.
placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda')
If it is cpu, parameters, gradients and optimizer states will be offloaded to CPU,
If it is cuda, they will not be offloaded, which means max CUDA memory will be used. It is the fastest.
pin_memory(bool): Whether to pin the memory for the data loader. Only for ZeRO-3.
force_outputs_fp32(bool): Whether to force the outputs to be fp32. Only for ZeRO-3.
search_range_mb(int): The search range in MB for the chunk size. Only for ZeRO-3.
hidden_dim(optional, int): The hidden dimension for the gemini. Only for ZeRO-3.
min_chunk_size_mb(float): The minimum chunk size in MB. Only for ZeRO-3.
gpu_margin_mem_ratio(float): The margin memory ratio for the GPU. Only for ZeRO-3.
reduce_bugket_size(int): The reduce bucket size in bytes. Only for ZeRO-1 and ZeRO-2.
overlap_communication(bool): Whether to overlap communication and computation. Only for ZeRO-1 and ZeRO-2.
initial_scale(float): The initial scale for the optimizer.
growth_factor(float): The growth factor for the optimizer.
backoff_factor(float): The backoff factor for the optimizer.
growth_interval(int): The growth interval for the optimizer.
hysteresis(int): The hysteresis for the optimizer.
min_scale(float): The minimum scale for the optimizer.
max_scale(float): The maximum scale for the optimizer.
max_norm(float): The maximum norm for the optimizer.
norm_type(float): The norm type for the optimizer.
"""
def __init__(
self,
stage: int = 3,
precision: str = 'fp16',
seed: int = 42,
shard_init: bool = False, # only for stage 3
placement_policy: str = 'cuda',
pin_memory: bool = True, # only for stage 3
force_outputs_fp32: bool = False, # only for stage 3
scatter_after_inference: bool = False, # only for stage 3
2023-03-28 12:25:36 +00:00
search_range_mb: int = 32, # only for stage 3
hidden_dim: Optional[int] = None, # only for stage 3
min_chunk_size_mb: float = 32, # only for stage 3
gpu_margin_mem_ratio: float = 0.0, # only for stage 3
reduce_bucket_size: int = 12 * 1024**2, # only for stage 1&2
overlap_communication: bool = True, # only for stage 1&2
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
min_scale: float = 1,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0) -> None:
super().__init__(seed)
assert placement_policy in ('cpu', 'cuda'), f'Unsupported placement policy "{placement_policy}"'
assert precision in ('fp32', 'fp16'), f'Unsupported precision "{precision}"'
self.stage = stage
# TODO(ver217): support shard_init when using from_pretrained()
if shard_init:
warnings.warn(
f'Shard init is not supported model.from_pretrained() yet. Please load weights after strategy.prepare()'
)
if stage == 3 and precision == 'fp32':
warnings.warn(f'Stage 3 only supports fp16. Precision is set to fp16.')
precision = 'fp16'
self.precision = precision
self.shard_init = shard_init
self.gemini_config = dict(device=get_current_device(),
placement_policy=placement_policy,
pin_memory=pin_memory,
force_outputs_fp32=force_outputs_fp32,
strict_ddp_mode=shard_init,
search_range_mb=search_range_mb,
hidden_dim=hidden_dim,
min_chunk_size_mb=min_chunk_size_mb,
scatter_after_inference=scatter_after_inference)
2023-03-28 12:25:36 +00:00
if stage == 3:
self.zero_optim_config = dict(gpu_margin_mem_ratio=gpu_margin_mem_ratio)
else:
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size,
overlap_communication=overlap_communication,
cpu_offload=(placement_policy == 'cpu'))
self.optim_kwargs = dict(initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
max_norm=max_norm,
norm_type=norm_type)
def setup_distributed(self) -> None:
colossalai.launch_from_torch({}, seed=self.seed)
def model_init_context(self):
if self.stage == 3:
world_size = dist.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if self.shard_init else None
default_dist_spec = ShardSpec([-1], [world_size]) if self.shard_init else None
return ColoInitContext(device=get_current_device(),
dtype=torch.half,
default_pg=shard_pg,
default_dist_spec=default_dist_spec)
return super().model_init_context()
def setup_model(self, model: nn.Module) -> nn.Module:
model = zero_model_wrapper(model, zero_stage=self.stage, gemini_config=self.gemini_config)
if self.stage != 3 and self.precision == 'fp16':
model = model.half().cuda()
2023-03-28 12:25:36 +00:00
return model
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
assert isinstance(optimizer, (CPUAdam, HybridAdam)), f'Unsupported optimizer {type(optimizer)}'
return zero_optim_wrapper(model, optimizer, optim_config=self.zero_optim_config, **self.optim_kwargs)
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.backward(loss)
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.step()
def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None:
if only_rank0 and dist.get_rank() != 0 and self.stage != 3:
return
base_model = get_base_model(model)
if self.stage == 3:
assert isinstance(base_model, ZeroDDP)
# for stage 3, state_dict() method should be called on every rank
state_dict = base_model.state_dict(only_rank_0=only_rank0)
2023-03-28 12:25:36 +00:00
else:
# only_rank0 is false or rank == 0
state_dict = base_model.state_dict()
if only_rank0 and dist.get_rank() != 0:
return
torch.save(state_dict, path)
2023-03-28 12:25:36 +00:00
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
if only_rank0:
raise RuntimeError(
f'Optimizer states are sharded when using ColossalAIStrategy. Only rank0 is not supported.')
torch.save(optimizer.state_dict(), path)
def unwrap_model(self, model: nn.Module) -> nn.Module:
base_model: Union[nn.Module, ZeroDDP] = get_base_model(model)
if self.stage == 3:
assert isinstance(base_model, ZeroDDP)
return base_model.module
return base_model
def save_pretrained(self,
model: nn.Module,
path: str,
only_rank0: bool = True,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
if self.stage == 3:
raise RuntimeError('ColossalAI strategy with stage-3 does not support save_pretrained() now')
super().save_pretrained(model, path, only_rank0, tokenizer)