ColossalAI/colossalai/auto_parallel/solver/op_handler/conv_handler.py

645 lines
38 KiB
Python
Raw Normal View History

import operator
from functools import reduce
import warnings
import torch
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
from .._utils import generate_sharding_spec
__all__ = ['ConvHandler']
class ConvHandler(OperatorHandler):
"""
A OperatorHandler which deals with the sharding strategies of Convolution.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_data = self.predecessor_node[0]._meta_data
self.weight = self.module_named_parameters['weight']
self.output_data = self.node._meta_data
self._sanity_check()
def _sanity_check(self):
'''
In sanity check, we need make sure the input data having correct dimension size.
For Conv1d, the dim of input data should be 3([N, C, L]).
For Conv2d, the dim of input data should be 4([N, C, H, W]).
For Conv3d, the dim of input data should be 5([N, C, H, W, D]).
'''
assert self.input_data.dim() in (3, 4,
5), f'We suppose the dim of input fed into conv op should in range of [3, 5].'
def _generate_compute_cost(self, bs, channel_in, channel_out):
'''
Compute the computation cost per device with this specific strategy.
Note: compute_cost need to be devided by TFLOPS, now it just shows the computation size.
Argument:
bs(int): Batch size of the input data.
channel_in(int): The channel dimension of input data.
channel_out(int): The out channel of the conv weight.
Return:
compute_cost(float): Computation cost per device with this specific strategy
'''
# TODO: compute_cost need to be devided by TFLOPS, now it just shows the computation size.
# 1D: (L) * N * Cout * Cin * kernel
# 2D: (H * W) * N * Cout * Cin * kernel
# 3D: (H * W * D) * N * Cout * Cin * kernel
output_size = self.output_data.shape[2:]
output_size_product = reduce(operator.mul, output_size, 1)
input_size = self.input_data.shape[2:]
input_size_product = reduce(operator.mul, input_size, 1)
kernel_size = self.weight.shape[2:]
kernel_size_product = reduce(operator.mul, kernel_size, 1)
forward_compute_cost = output_size_product * bs * channel_in * channel_out * kernel_size_product
backward_activation_cost = input_size_product * bs * channel_in * channel_out * kernel_size_product
backward_weight_cost = output_size_product * bs * channel_in * channel_out * kernel_size_product
compute_cost = forward_compute_cost + backward_activation_cost + backward_weight_cost
return compute_cost
def _generate_memory_cost(self, sharding_size_forward, sharding_size_backward_activation, sharding_size_weight):
'''
Compute the memory cost per device with this specific strategy.
Argument:
sharding_size_forward(int): The forward activation will be divided
into sharding_size_forward number partions.
sharding_size_backward_activation(int): The backward activation will
be divided into sharding_size_backward_activation number partions.
sharding_size_weight(int): The backward weight will be divided
into sharding_size_weight number partions.
Return:
memory_cost(Tuple[float]): Memory cost per device with this
specific strategy, the first element of this tuple is forward
memory cost, and the second element of this tuple is backward
memory cost.
memory_cost_forward(float): Memory cost of forward activation per
device with this specific strategy.
memory_cost_backward_activation(float): Memory cost of backward activation
per device with this specific strategy.
'''
# compute the memory cost of this strategy
dtype = self.input_data.dtype
numel_output = self.output_data.numel()
numel_input = self.input_data.numel()
numel_weight = self.weight.numel()
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
# forward memory_cost
memory_cost_forward_activation = numel_output * size_per_elem_bytes / sharding_size_forward
memory_cost_forward_weight = numel_weight * size_per_elem_bytes / sharding_size_weight
memory_cost_forward = memory_cost_forward_activation + memory_cost_forward_weight
# backward memory_cost
memory_cost_backward_activation = numel_input * size_per_elem_bytes / sharding_size_backward_activation
memory_cost_backward_weight = numel_weight * size_per_elem_bytes / sharding_size_weight
memory_cost_backward = memory_cost_backward_activation + memory_cost_backward_weight
# memory_cost pair
memory_cost = (memory_cost_forward, memory_cost_backward)
return memory_cost, memory_cost_forward_activation, memory_cost_backward_activation, memory_cost_backward_weight
def split_input_batch_weight_out_channel(self, mesh_dim_0, mesh_dim_1):
name = f'S{mesh_dim_0}S{mesh_dim_1} = S{mesh_dim_0}R x RS{mesh_dim_1}'
dim_partition_dict_for_input = {0: [mesh_dim_0]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {1: [mesh_dim_1]}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0] // self.device_mesh.shape[mesh_dim_0]
channel_in = self.input_data.shape[1]
channel_out = self.weight.shape[1] // self.device_mesh.shape[mesh_dim_1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = self.device_mesh.shape[mesh_dim_1]
memory_cost, _, memory_cost_backward_activation, memory_cost_backward_weight = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# This strategy do not need to do all_reduce operation during forward
communication_cost_forward = 0
# compute the backward communication cost to all reduce the input activation grad
communication_cost_backward_activation = self.device_mesh.all_reduce_cost(memory_cost_backward_activation,
mesh_dim_1)
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.all_reduce_cost(memory_cost_backward_weight, mesh_dim_0)
# total communication cost
communication_cost = communication_cost_forward + communication_cost_backward_activation + communication_cost_backward_weight
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_input_batch(self, mesh_dim_0):
name = f'S{mesh_dim_0}R = S{mesh_dim_0}R x RR'
dim_partition_dict_for_input = {0: [mesh_dim_0]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0]}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0] // self.device_mesh.shape[mesh_dim_0]
channel_in = self.input_data.shape[1]
channel_out = self.weight.shape[1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = self.device_mesh.shape[mesh_dim_0]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = 1
memory_cost, _, _, memory_cost_backward_weight = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
# This strategy do not need to do all_reduce operation in forward phase.
communication_cost_forward = 0
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.all_reduce_cost(memory_cost_backward_weight, mesh_dim_0)
# compute the total cost
communication_cost = communication_cost_forward + communication_cost_backward_weight
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_input_both_dim_weight_in_channel(self, mesh_dim_0, mesh_dim_1):
name = f'S{mesh_dim_0}R = S{mesh_dim_0}S{mesh_dim_1} x S{mesh_dim_1}R'
dim_partition_dict_for_input = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {0: [mesh_dim_0]}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0]}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0] // self.device_mesh.shape[mesh_dim_0]
channel_in = self.input_data.shape[1] // self.device_mesh.shape[mesh_dim_1]
channel_out = self.weight.shape[1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = self.device_mesh.shape[mesh_dim_0]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
sharding_size_weight = self.device_mesh.shape[mesh_dim_1]
memory_cost, memory_cost_forward_activation, _, memory_cost_backward_weight = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute the communication cost of this strategy during forward phase
communication_cost_forward = self.device_mesh.all_reduce_cost(memory_cost_forward_activation, mesh_dim_1)
# This strategy do not need to do all_reduce operation to compute the input activation grad
communication_cost_backward_activation = 0
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.all_reduce_cost(memory_cost_backward_weight, mesh_dim_0)
# compute total cost
communication_cost = communication_cost_forward + communication_cost_backward_activation + communication_cost_backward_weight
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_input_in_channel_weight_both_channel(self, mesh_dim_0, mesh_dim_1):
name = f'RS{mesh_dim_1} = RS{mesh_dim_0} x S{mesh_dim_0}S{mesh_dim_1}'
dim_partition_dict_for_input = {1: [mesh_dim_0]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {0: [mesh_dim_0], 1: [mesh_dim_1]}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_1]}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
channel_in = self.input_data.shape[1] // self.device_mesh.shape[mesh_dim_0]
channel_out = self.weight.shape[1] // self.device_mesh.shape[mesh_dim_1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = self.device_mesh.shape[mesh_dim_1]
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1]
memory_cost, memory_cost_forward_activation, memory_cost_backward_activation, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute the communication cost of this strategy during forward phase
communication_cost_forward = self.device_mesh.all_reduce_cost(memory_cost_forward_activation, mesh_dim_0)
# compute the communication cost of this strategy during backward phase
communication_cost_backward = self.device_mesh.all_reduce_cost(memory_cost_backward_activation, mesh_dim_1)
communication_cost = communication_cost_forward + communication_cost_backward
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_input_in_channel_weight_in_channel(self, mesh_dim_0):
name = f'RR = RS{mesh_dim_0} x S{mesh_dim_0}R'
dim_partition_dict_for_input = {1: [mesh_dim_0]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {0: [mesh_dim_0]}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
channel_in = self.input_data.shape[1] // self.device_mesh.shape[mesh_dim_0]
channel_out = self.weight.shape[1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = 1
sharding_size_backward_activation = self.device_mesh.shape[mesh_dim_0]
sharding_size_weight = self.device_mesh.shape[mesh_dim_0]
memory_cost, memory_cost_forward_activation, _, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute the communication cost of this strategy during forward phase
communication_cost_forward = self.device_mesh.all_reduce_cost(memory_cost_forward_activation, mesh_dim_0)
# This strategy do NOT need all_reduce during forward phase
communication_cost_backward = 0
communication_cost = communication_cost_forward + communication_cost_backward
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_weight_out_channel(self, mesh_dim_0):
name = f'RS{mesh_dim_0} = RR x RS{mesh_dim_0}'
dim_partition_dict_for_input = {}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {1: [mesh_dim_0]}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {1: [mesh_dim_0]}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
channel_in = self.input_data.shape[1]
channel_out = self.weight.shape[1] // self.device_mesh.shape[mesh_dim_0]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = self.device_mesh.shape[mesh_dim_0]
sharding_size_backward_activation = 1
sharding_size_weight = self.device_mesh.shape[mesh_dim_0]
memory_cost, _, memory_cost_backward_activation, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# This strategy do not need to do all_reduce during forward phase
communication_cost_forward = 0
# compute the communication cost of this strategy during backward phase
communication_cost_backward = self.device_mesh.all_reduce_cost(memory_cost_backward_activation, mesh_dim_0)
communication_cost = communication_cost_forward + communication_cost_backward
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def non_split(self):
name = f'RR = RR x RR'
dim_partition_dict_for_input = {}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
channel_in = self.input_data.shape[1]
channel_out = self.weight.shape[1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = 1
sharding_size_backward_activation = 1
sharding_size_weight = 1
memory_cost, _, _, _ = self._generate_memory_cost(sharding_size_forward, sharding_size_backward_activation,
sharding_size_weight)
# This strategy do not need to do all_reduce in both forward and backward phase
communication_cost = 0
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_1d_parallel_on_input_batch(self, mesh_dim_0, mesh_dim_1):
name = f'S{mesh_dim_0}{mesh_dim_1}R = S{mesh_dim_0}{mesh_dim_1}R x RR'
dim_partition_dict_for_input = {0: [mesh_dim_0, mesh_dim_1]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {0: [mesh_dim_0, mesh_dim_1]}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0] // (self.device_mesh.shape[mesh_dim_0] * self.device_mesh.shape[mesh_dim_1])
channel_in = self.input_data.shape[1]
channel_out = self.weight.shape[1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[mesh_dim_1]
sharding_size_backward_activation = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[
mesh_dim_1]
sharding_size_weight = 1
memory_cost, _, _, memory_cost_backward_weight = self._generate_memory_cost(sharding_size_forward,
sharding_size_backward_activation,
sharding_size_weight)
# This strategy do not need to do all_reduce in forward phase
communication_cost_forward = 0
# compute the backward communication cost to all reduce the weight due to data parallel
communication_cost_backward_weight = self.device_mesh.flatten_device_mesh.all_reduce_cost(
memory_cost_backward_weight, 0)
# compute the total communication cost
communication_cost = communication_cost_backward_weight + communication_cost_forward
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def split_1d_parallel_on_in_channel(self, mesh_dim_0, mesh_dim_1):
name = f'RR = RS{mesh_dim_0}{mesh_dim_1} x S{mesh_dim_0}{mesh_dim_1}R'
dim_partition_dict_for_input = {1: [mesh_dim_0, mesh_dim_1]}
sharding_spec_for_input = generate_sharding_spec(self.input_data, self.device_mesh,
dim_partition_dict_for_input)
dim_partition_dict_for_weight = {0: [mesh_dim_0, mesh_dim_1]}
sharding_spec_for_weight = generate_sharding_spec(self.weight, self.device_mesh, dim_partition_dict_for_weight)
dim_partition_dict_for_output = {}
sharding_spec_for_output = generate_sharding_spec(self.output_data, self.device_mesh,
dim_partition_dict_for_output)
# generate resharding cost for this strategy
resharding_costs = self._generate_resharding_costs([sharding_spec_for_input, sharding_spec_for_weight])
# compute the computation cost of this strategy
bs = self.input_data.shape[0]
channel_in = self.input_data.shape[1] // (self.device_mesh.shape[mesh_dim_0] *
self.device_mesh.shape[mesh_dim_1])
channel_out = self.weight.shape[1]
compute_cost = self._generate_compute_cost(bs, channel_in, channel_out)
# compute the memory cost of this strategy
sharding_size_forward = 1
sharding_size_backward_activation = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[
mesh_dim_1]
sharding_size_weight = self.device_mesh.mesh_shape[mesh_dim_0] * self.device_mesh.mesh_shape[mesh_dim_1]
memory_cost, memory_cost_forward_activation, _, _ = self._generate_memory_cost(
sharding_size_forward, sharding_size_backward_activation, sharding_size_weight)
# compute communication cost during forward phase
communication_cost_forward = self.device_mesh.flatten_device_mesh.all_reduce_cost(
memory_cost_forward_activation, 0)
# This strategy do NOT need do all_reduce during backward phase
communication_cost_backward = 0
communication_cost = communication_cost_forward + communication_cost_backward
sharding_strategies = ShardingStrategy(name,
output_sharding_spec=sharding_spec_for_output,
compute_cost=compute_cost,
communication_cost=communication_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=(sharding_spec_for_input, sharding_spec_for_weight))
self.strategies_vector.append(sharding_strategies)
def register_strategy(self) -> StrategiesVector:
'''
Generate every possible strategies for a Conv node, and record all strategies into the strategies_vector.
Example:
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
shape_consistency_manager = ShapeConsistencyManager()
model = ConvModel(16, 32)
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
# %conv : [#users=1] = call_module[target=conv](args = (%mul,), kwargs = {})
# return conv
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
# [x, mul, conv, output]
nodes = [node for node in gm.graph.nodes]
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
strategies_vector_for_input = StrategiesVector(node=nodes[0], in_nodes=[nodes[1], 2], strategies=strategies_for_input)
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
strategies_vector = StrategiesVector(node=nodes[2], in_nodes=[nodes[1], ])
conv_handler = ConvHandler(input_node=nodes[1], input_index=0, weight=dict(gm.named_modules())[nodes[2].name].weight, output_node=nodes[2],
device_mesh=device_mesh, strategies_vector=strategies_vector, shape_consistency_manager=shape_consistency_manager)
conv_handler.register_strategy_into_strategies_vector()
for strategy in conv_handler.strategies_vector:
print(f'{strategy.name}: compute_cost is {strategy.compute_cost}, communication_cost is {strategy.communication_cost}, memory_cost is {strategy.memory_cost}, resharding_costs is {strategy.resharding_costs}')
Output:
S0S1 = S0R x RS1: compute_cost is 8856576, communication_cost is 0, memory_cost is 492032.0, resharding_costs is {mul: [0, 32769.001, 131074.2, 0, 32769.1, 131074.2, 98307.201]}
S1S0 = S1R x RS0: compute_cost is 8856576, communication_cost is 0, memory_cost is 492032.0, resharding_costs is {mul: [0, 131074.2, 32769.001, 131074.2, 98307.201, 0, 32769.1]}
S0R = S0R x RR: compute_cost is 17713152, communication_cost is 0, memory_cost is 984064.0, resharding_costs is {mul: [0, 32769.001, 131074.2, 0, 32769.1, 131074.2, 98307.201]}
S1R = S1R x RR: compute_cost is 17713152, communication_cost is 0, memory_cost is 984064.0, resharding_costs is {mul: [0, 131074.2, 32769.001, 131074.2, 98307.201, 0, 32769.1]}
S0R = S0S1 x S1R: compute_cost is 8856576, communication_cost is 984065.01, memory_cost is 984064.0, resharding_costs is {mul: [0, 65538.002, 0, 0, 0, 65538.002, 196614.402]}
S1R = S1S0 x S0R: compute_cost is 8856576, communication_cost is 984065.01, memory_cost is 984064.0, resharding_costs is {mul: [0, 0, 65538.002, 65538.002, 196614.402, 0, 0]}
RS1 = RS0 x S0S1: compute_cost is 8856576, communication_cost is 984065.01, memory_cost is 984064.0, resharding_costs is {mul: [0, 0, 131074.2, 32769.001, 98307.201, 131074.2, 32769.1]}
RS0 = RS1 x S1S0: compute_cost is 8856576, communication_cost is 984065.01, memory_cost is 984064.0, resharding_costs is {mul: [0, 131074.2, 0, 131074.2, 32769.1, 32769.001, 98307.201]}
RR = RS0 x S0R: compute_cost is 17713152, communication_cost is 1968129.01, memory_cost is 1968128, resharding_costs is {mul: [0, 0, 131074.2, 32769.001, 98307.201, 131074.2, 32769.1]}
RR = RS1 x S1R: compute_cost is 17713152, communication_cost is 1968129.01, memory_cost is 1968128, resharding_costs is {mul: [0, 131074.2, 0, 131074.2, 32769.1, 32769.001, 98307.201]}
RS0 = RR x RS0: compute_cost is 17713152, communication_cost is 0, memory_cost is 984064.0, resharding_costs is {mul: [0, 65537.1, 65537.1, 65537.1, 131075.30000000002, 65537.1, 131075.30000000002]}
RS1 = RR x RS1: compute_cost is 17713152, communication_cost is 0, memory_cost is 984064.0, resharding_costs is {mul: [0, 65537.1, 65537.1, 65537.1, 131075.30000000002, 65537.1, 131075.30000000002]}
RR = RR x RR: compute_cost is 35426304, communication_cost is 0, memory_cost is 1968128, resharding_costs is {mul: [0, 65537.1, 65537.1, 65537.1, 131075.30000000002, 65537.1, 131075.30000000002]}
S01R = S01R x RR: compute_cost is 8856576, communication_cost is 0, memory_cost is 492032.0, resharding_costs is {mul: [0, 65538.002, 262148.4, 0, 16385.001, 262148.4, 196614.402]}
RR = RS01 x S01R: compute_cost is 8856576, communication_cost is 0, memory_cost is 1968128, resharding_costs is {mul: [0, 0, 262148.4, 65538.002, 196614.402, 262148.4, 65538.2]}
'''
# SS = SR x RS
try:
self.split_input_batch_weight_out_channel(0, 1)
except Exception as e:
warnings.warn(f'{e}')
try:
self.split_input_batch_weight_out_channel(1, 0)
except Exception as e:
warnings.warn(f'{e}')
# SR = SR x RR
self.split_input_batch(0)
self.split_input_batch(1)
# SR = SS x SR
try:
self.split_input_both_dim_weight_in_channel(0, 1)
except Exception as e:
warnings.warn(f'{e}')
try:
self.split_input_both_dim_weight_in_channel(1, 0)
except Exception as e:
warnings.warn(f'{e}')
# RS = RS x SS
try:
self.split_input_in_channel_weight_both_channel(0, 1)
except Exception as e:
warnings.warn(f'{e}')
try:
self.split_input_in_channel_weight_both_channel(1, 0)
except Exception as e:
warnings.warn(f'{e}')
# RR = RS x SR
try:
self.split_input_in_channel_weight_in_channel(0)
except Exception as e:
warnings.warn(f'{e}')
try:
self.split_input_in_channel_weight_in_channel(1)
except Exception as e:
warnings.warn(f'{e}')
# RS = RR x RS
self.split_weight_out_channel(0)
self.split_weight_out_channel(1)
# RR= RR x RR
self.non_split()
# S01R = S01R x RR
self.split_1d_parallel_on_input_batch(0, 1)
# RR = RS01 x S01R
try:
self.split_1d_parallel_on_in_channel(0, 1)
except Exception as e:
warnings.warn(f'{e}')
# print(f'strategies num is :{len(self.strategies_vector)}')
return self.strategies_vector
CONV_STRATEGIES_LIST = [
'S0S1 = S0R x RS1', 'S1S0 = S1R x RS0', 'S0R = S0R x RR', 'S1R = S1R x RR', 'S0R = S0S1 x S1R', 'S1R = S1S0 x S0R',
'RS1 = RS0 x S0S1', 'RS0 = RS1 x S1S0', 'RR = RS0 x S0R', 'RR = RS1 x S1R', 'RS0 = RR x RS0', 'RS1 = RR x RS1',
'RR = RR x RR', 'S01R = S01R x RR', 'RR = RS01 x S01R'
]