mirror of https://github.com/hpcaitech/ColossalAI
YuliangLiu0306
2 years ago
committed by
GitHub
2 changed files with 168 additions and 29 deletions
@ -0,0 +1,125 @@
|
||||
import torch |
||||
from torch.fx import GraphModule |
||||
import torch.nn as nn |
||||
import pytest |
||||
|
||||
from colossalai.fx.tracer.tracer import ColoTracer |
||||
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector |
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager |
||||
from colossalai.device.device_mesh import DeviceMesh |
||||
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor |
||||
from colossalai.auto_parallel.solver.cost_graph import CostGraph |
||||
from copy import deepcopy |
||||
from colossalai.auto_parallel.solver import Solver |
||||
from torchvision.models import resnet34, resnet50 |
||||
from colossalai.auto_parallel.solver.constants import * |
||||
from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser |
||||
|
||||
|
||||
class ConvModel(nn.Module): |
||||
|
||||
def __init__(self, c_in, c_out): |
||||
super().__init__() |
||||
self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3) |
||||
self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3) |
||||
self.conv3 = nn.Conv2d(c_out, c_out, kernel_size=3) |
||||
self.relu = nn.ReLU() |
||||
|
||||
def forward(self, x): |
||||
x = x * 2 |
||||
x = self.conv1(x) |
||||
x = self.conv2(x) |
||||
x = x / 2 |
||||
x = self.conv3(x) |
||||
x = self.relu(x) |
||||
return x |
||||
|
||||
|
||||
@pytest.mark.skip("for higher testing speed") |
||||
def test_cost_graph(): |
||||
physical_mesh_id = torch.arange(0, 8) |
||||
mesh_shape = (2, 4) |
||||
# [[0, 1] |
||||
# [2, 3]] |
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) |
||||
shape_consistency_manager = ShapeConsistencyManager() |
||||
|
||||
tracer = ColoTracer() |
||||
# model = ConvModel(16, 32) |
||||
# input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')} |
||||
model = resnet50(num_classes=100000) |
||||
input_sample = {'x': torch.rand(128, 3, 224, 224).to('meta')} |
||||
|
||||
graph = tracer.trace(root=model, meta_args=input_sample) |
||||
# graph(): |
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x] |
||||
# %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {}) |
||||
# %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {}) |
||||
# %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {}) |
||||
# %maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {}) |
||||
# %layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {}) |
||||
# %layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {}) |
||||
# %layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {}) |
||||
# %layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {}) |
||||
# %layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {}) |
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {}) |
||||
# %layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {}) |
||||
# %layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {}) |
||||
# %layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {}) |
||||
# %layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {}) |
||||
# %layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {}) |
||||
# %layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {}) |
||||
# %add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {}) |
||||
# ... |
||||
# %avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_2_relu_1,), kwargs = {}) |
||||
# %flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {}) |
||||
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {}) |
||||
# return fc |
||||
gm = GraphModule(model, graph, model.__class__.__name__) |
||||
gm.recompile() |
||||
graph_analyser = GraphAnalyser(gm) |
||||
liveness_list = graph_analyser.liveness_analysis() |
||||
# print(len(liveness_dict[0].unique_live_vars)) |
||||
# assert False |
||||
solver_options = {'fast_mode': True} |
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, shape_consistency_manager, solver_options) |
||||
strategies_constructor.build_strategies_and_cost() |
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies) |
||||
cost_graph.simplify_graph() |
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=1620017824.0) |
||||
# solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) |
||||
|
||||
ret = solver.call_solver_serialized_args() |
||||
print(ret) |
||||
strategies_list = list(ret[0]) |
||||
print(strategies_list) |
||||
computation_cost = 0 |
||||
communication_cost = 0 |
||||
communication_cost_bn = 0 |
||||
memory_cost = 0 |
||||
for index, node in enumerate(graph.nodes): |
||||
if node.op == 'call_module': |
||||
submod = node.graph.owning_module.get_submodule(node.target) |
||||
if type(submod) in ELEMENTWISE_MODULE_OP: |
||||
input_spec = node.args[0].strategies_vector[strategies_list[index]].output_sharding_spec |
||||
print(node.name, input_spec) |
||||
continue |
||||
if type(submod) in BATCHNORM_MODULE_OP: |
||||
communication_cost_bn += node.strategies_vector[strategies_list[index]].communication_cost |
||||
print(node.name, node.strategies_vector[strategies_list[index]].name) |
||||
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost |
||||
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost |
||||
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost |
||||
if isinstance(node_memory_cost, tuple): |
||||
node_memory_cost = node_memory_cost[0] |
||||
memory_cost += node_memory_cost |
||||
|
||||
print(f'computation cost is {computation_cost}') |
||||
print(f'communication cost is {communication_cost}') |
||||
print(f'memory cost is {memory_cost}') |
||||
print(f'bn communication cost is {communication_cost_bn}') |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
test_cost_graph() |
Loading…
Reference in new issue