ColossalAI/applications/ChatGPT/chatgpt/trainer/rm.py

94 lines
3.9 KiB
Python
Raw Normal View History

2023-02-14 14:17:25 +00:00
from abc import ABC
import loralib as lora
import torch
2023-02-14 14:17:25 +00:00
from chatgpt.dataset import RewardDataset
2023-03-07 08:34:22 +00:00
from chatgpt.models.loss import PairWiseLoss
from torch.optim import Adam, Optimizer
2023-02-14 14:17:25 +00:00
from torch.utils.data import DataLoader
from tqdm import tqdm
from .strategies import Strategy
from .utils import is_rank_0
2023-02-14 14:17:25 +00:00
class RewardModelTrainer(ABC):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim(Optimizer): the optimizer to use for training
2023-02-14 14:17:25 +00:00
train_dataset (RewardDataset): the dataset to use for training
eval_dataset (RewardDataset): the dataset to use for evaluation
batch_size (int, defaults to 1): the batch size while training
max_epochs (int, defaults to 2): the number of epochs to train
2023-02-14 14:17:25 +00:00
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
train_dataset: RewardDataset,
eval_dataset: RewardDataset,
batch_size: int = 1,
max_epochs: int = 2,
) -> None:
2023-02-14 14:17:25 +00:00
super().__init__()
self.strategy = strategy
self.epochs = max_epochs
2023-02-14 14:17:25 +00:00
self.train_dataloader = DataLoader(train_dataset, batch_size=batch_size)
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size)
self.model = strategy.setup_model(model)
if "DDP" in str(self.strategy):
self.model = self.model.module
2023-02-14 14:17:25 +00:00
self.loss_fn = PairWiseLoss()
self.optimizer = strategy.setup_optimizer(optim, self.model)
2023-02-14 14:17:25 +00:00
def fit(self, use_lora):
epoch_bar = tqdm(range(self.epochs), desc='Train epoch', disable=not is_rank_0())
2023-02-14 14:17:25 +00:00
for epoch in range(self.epochs):
step_bar = tqdm(range(self.train_dataloader.__len__()),
desc='Train step of epoch %d' % epoch,
disable=not is_rank_0())
2023-02-14 14:17:25 +00:00
# train
self.model.train()
2023-02-14 14:17:25 +00:00
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
chosen_ids = chosen_ids.squeeze(1).cuda()
c_mask = c_mask.squeeze(1).cuda()
reject_ids = reject_ids.squeeze(1).cuda()
r_mask = r_mask.squeeze(1).cuda()
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
loss = self.loss_fn(chosen_reward, reject_reward)
self.strategy.backward(loss, self.model, self.optimizer)
self.strategy.optimizer_step(self.optimizer)
2023-02-14 14:17:25 +00:00
self.optimizer.zero_grad()
step_bar.update()
step_bar.set_postfix({'loss': loss.item()})
# eval
self.model.eval()
with torch.no_grad():
2023-02-14 14:17:25 +00:00
dist = 0
loss_sum = 0
for chosen_ids, c_mask, reject_ids, r_mask in self.eval_dataloader:
chosen_ids = chosen_ids.squeeze(1).cuda()
c_mask = c_mask.squeeze(1).cuda()
reject_ids = reject_ids.squeeze(1).cuda()
r_mask = r_mask.squeeze(1).cuda()
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
dist += (chosen_reward - reject_reward).mean().item()
loss = self.loss_fn(chosen_reward, reject_reward)
loss_sum += loss.item()
dist_mean = dist / self.eval_dataloader.__len__()
loss_mean = loss_sum / self.eval_dataloader.__len__()
2023-02-14 14:17:25 +00:00
epoch_bar.update()
step_bar.set_postfix({'loss': loss_mean, 'dist_mean': dist_mean})
2023-02-14 14:17:25 +00:00
step_bar.close()