ColossalAI/applications/ChatGPT/chatgpt/trainer/rm.py

78 lines
3.3 KiB
Python
Raw Normal View History

2023-02-14 14:17:25 +00:00
from abc import ABC
import loralib as lora
from chatgpt.dataset import RewardDataset
from chatgpt.nn import PairWiseLoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from tqdm import tqdm
class RewardModelTrainer(ABC):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
train_dataset (RewardDataset): the dataset to use for training
eval_dataset (RewardDataset): the dataset to use for evaluation
batch_size (int, defaults to 1): the batch size while training
num_epochs (int, defaults to 2): the number of epochs to train
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
"""
def __init__(self,
model,
train_dataset: RewardDataset,
eval_dataset: RewardDataset,
batch_size: int = 1,
num_epochs: int = 2,
optim_kwargs: dict = {'lr': 1e-4}) -> None:
super().__init__()
self.model = model
self.train_dataloader = DataLoader(train_dataset, batch_size=batch_size)
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size)
self.loss_fn = PairWiseLoss()
self.optimizer = Adam(self.model.parameters(), **optim_kwargs)
self.epochs = num_epochs
def fit(self, use_lora):
epoch_bar = tqdm(range(self.epochs), desc='Train epoch')
for epoch in range(self.epochs):
step_bar = tqdm(range(self.train_dataloader.__len__()), desc='Train step of epoch %d' % epoch)
# train
if use_lora > 0:
print("Using Lora")
lora.mark_only_lora_as_trainable(self.model.model)
2023-02-14 14:17:25 +00:00
else:
self.model.train()
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
chosen_ids = chosen_ids.squeeze(1).cuda()
c_mask = c_mask.squeeze(1).cuda()
reject_ids = reject_ids.squeeze(1).cuda()
r_mask = r_mask.squeeze(1).cuda()
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
loss = self.loss_fn(chosen_reward, reject_reward)
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
step_bar.update()
step_bar.set_postfix({'loss': loss.item()})
# eval
self.model.eval()
for chosen_ids, c_mask, reject_ids, r_mask in self.eval_dataloader:
dist = 0
chosen_ids = chosen_ids.squeeze(1).cuda()
c_mask = c_mask.squeeze(1).cuda()
reject_ids = reject_ids.squeeze(1).cuda()
r_mask = r_mask.squeeze(1).cuda()
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
dist += (chosen_reward - reject_reward)
dist_mean = dist / self.eval_dataloader.__len__()
epoch_bar.update()
step_bar.set_postfix({'loss': loss.item(), 'dist_mean': dist_mean.item()})
step_bar.close()