mirror of https://github.com/hpcaitech/ColossalAI
[chatgpt] support colossalai strategy to train rm (#2742)
* [chatgpt]fix train_rm bug with lora * [chatgpt]support colossalai strategy to train rm * fix pre-commit * fix pre-commit 2pull/2744/head
parent
648183a960
commit
613efebc5c
|
@ -3,10 +3,13 @@ from abc import ABC
|
|||
import loralib as lora
|
||||
from chatgpt.dataset import RewardDataset
|
||||
from chatgpt.nn import PairWiseLoss
|
||||
from torch.optim import Adam
|
||||
from torch.optim import Adam, Optimizer
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from .strategies import Strategy
|
||||
from .utils import is_rank_0
|
||||
|
||||
|
||||
class RewardModelTrainer(ABC):
|
||||
"""
|
||||
|
@ -14,32 +17,41 @@ class RewardModelTrainer(ABC):
|
|||
|
||||
Args:
|
||||
model (torch.nn.Module): the model to train
|
||||
strategy (Strategy): the strategy to use for training
|
||||
optim(Optimizer): the optimizer to use for training
|
||||
train_dataset (RewardDataset): the dataset to use for training
|
||||
eval_dataset (RewardDataset): the dataset to use for evaluation
|
||||
batch_size (int, defaults to 1): the batch size while training
|
||||
num_epochs (int, defaults to 2): the number of epochs to train
|
||||
max_epochs (int, defaults to 2): the number of epochs to train
|
||||
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model,
|
||||
train_dataset: RewardDataset,
|
||||
eval_dataset: RewardDataset,
|
||||
batch_size: int = 1,
|
||||
num_epochs: int = 2,
|
||||
optim_kwargs: dict = {'lr': 1e-4}) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
strategy: Strategy,
|
||||
optim: Optimizer,
|
||||
train_dataset: RewardDataset,
|
||||
eval_dataset: RewardDataset,
|
||||
batch_size: int = 1,
|
||||
max_epochs: int = 2,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.strategy = strategy
|
||||
self.epochs = max_epochs
|
||||
self.train_dataloader = DataLoader(train_dataset, batch_size=batch_size)
|
||||
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size)
|
||||
|
||||
self.model = strategy.setup_model(model)
|
||||
self.loss_fn = PairWiseLoss()
|
||||
self.optimizer = Adam(self.model.parameters(), **optim_kwargs)
|
||||
self.epochs = num_epochs
|
||||
self.optimizer = strategy.setup_optimizer(optim, self.model)
|
||||
|
||||
def fit(self, use_lora):
|
||||
epoch_bar = tqdm(range(self.epochs), desc='Train epoch')
|
||||
epoch_bar = tqdm(range(self.epochs), desc='Train epoch', disable=not is_rank_0())
|
||||
for epoch in range(self.epochs):
|
||||
step_bar = tqdm(range(self.train_dataloader.__len__()), desc='Train step of epoch %d' % epoch)
|
||||
step_bar = tqdm(range(self.train_dataloader.__len__()),
|
||||
desc='Train step of epoch %d' % epoch,
|
||||
disable=not is_rank_0())
|
||||
# train
|
||||
if use_lora > 0:
|
||||
print("Using Lora")
|
||||
|
@ -54,8 +66,8 @@ class RewardModelTrainer(ABC):
|
|||
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
|
||||
reject_reward = self.model(reject_ids, attention_mask=r_mask)
|
||||
loss = self.loss_fn(chosen_reward, reject_reward)
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
self.strategy.backward(loss, self.model, self.optimizer)
|
||||
self.strategy.optimizer_step(self.optimizer)
|
||||
self.optimizer.zero_grad()
|
||||
step_bar.update()
|
||||
step_bar.set_postfix({'loss': loss.item()})
|
||||
|
|
|
@ -13,6 +13,6 @@ set_n_least_used_CUDA_VISIBLE_DEVICES() {
|
|||
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
set_n_least_used_CUDA_VISIBLE_DEVICES 1
|
||||
set_n_least_used_CUDA_VISIBLE_DEVICES 2
|
||||
|
||||
python train_dummy.py --model bloom --pretrain '/data2/users/lczht/bloom-560m' --lora_rank 16
|
||||
torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy colossalai_zero2
|
||||
|
|
|
@ -13,6 +13,6 @@ set_n_least_used_CUDA_VISIBLE_DEVICES() {
|
|||
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
set_n_least_used_CUDA_VISIBLE_DEVICES 1
|
||||
set_n_least_used_CUDA_VISIBLE_DEVICES 2
|
||||
|
||||
python train_prompts.py prompts.csv --pretrain '/data2/users/lczht/bloom-560m' --lora_rank 16
|
||||
torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai_zero2
|
||||
|
|
|
@ -5,33 +5,55 @@ import torch
|
|||
from chatgpt.dataset import RewardDataset
|
||||
from chatgpt.nn import BLOOMRM
|
||||
from chatgpt.trainer import RewardModelTrainer
|
||||
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
||||
from datasets import load_dataset
|
||||
from torch.optim import Adam
|
||||
from transformers import BloomTokenizerFast
|
||||
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
|
||||
|
||||
def train(args):
|
||||
# configure strategy
|
||||
if args.strategy == 'naive':
|
||||
strategy = NaiveStrategy()
|
||||
elif args.strategy == 'ddp':
|
||||
strategy = DDPStrategy()
|
||||
elif args.strategy == 'colossalai_gemini':
|
||||
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
|
||||
elif args.strategy == 'colossalai_zero2':
|
||||
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
|
||||
else:
|
||||
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
||||
|
||||
# configure model
|
||||
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
model = BLOOMRM(pretrained=args.pretrain)
|
||||
|
||||
model.cuda()
|
||||
|
||||
model = BLOOMRM(pretrained=args.pretrain).cuda()
|
||||
max_len = 1024
|
||||
|
||||
# configure optimizer
|
||||
if args.strategy.startswith('colossalai'):
|
||||
optim = HybridAdam(model.parameters(), lr=5e-5)
|
||||
else:
|
||||
optim = Adam(model.parameters(), lr=5e-5)
|
||||
|
||||
# prepare for data and dataset
|
||||
data = load_dataset(args.dataset)
|
||||
train_data = data["train"]
|
||||
eval_data = data['test']
|
||||
train_data = data["train"].select(range(100))
|
||||
eval_data = data['test'].select(range(5))
|
||||
train_dataset = RewardDataset(train_data, tokenizer, max_len)
|
||||
eval_dataset = RewardDataset(eval_data, tokenizer, max_len)
|
||||
|
||||
# batch_size here is expected to be C(k,2), k means # response of each prompt
|
||||
# be limited with the format of dataset 'Dahoas/rm-static', we'd better use batch_size as 1
|
||||
trainer = RewardModelTrainer(model=model,
|
||||
strategy=strategy,
|
||||
optim=optim,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
batch_size=args.batch_size,
|
||||
num_epochs=args.max_epochs)
|
||||
max_epochs=args.max_epochs)
|
||||
|
||||
trainer.fit(use_lora=args.lora_rank)
|
||||
|
||||
|
@ -43,6 +65,9 @@ def train(args):
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--strategy',
|
||||
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
||||
default='naive')
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--dataset', type=str, default='Dahoas/rm-static')
|
||||
parser.add_argument('--save_path', type=str, default='rm_ckpt.pth')
|
||||
|
|
|
@ -13,6 +13,6 @@ set_n_least_used_CUDA_VISIBLE_DEVICES() {
|
|||
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
|
||||
}
|
||||
|
||||
set_n_least_used_CUDA_VISIBLE_DEVICES 1
|
||||
set_n_least_used_CUDA_VISIBLE_DEVICES 2
|
||||
|
||||
python train_reward_model.py --pretrain '/data2/users/lczht/bloom-560m' --lora_rank 16
|
||||
torchrun --standalone --nproc_per_node=2 train_reward_model.py --pretrain '/data2/users/lczht/bloom-560m' --strategy colossalai_zero2
|
||||
|
|
Loading…
Reference in New Issue