You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/tensor/utils.py

227 lines
8.2 KiB

from typing import Dict, Iterator, List, Tuple, Union
import torch
import torch.nn as nn
from colossalai.tensor.colo_tensor import ColoTensor
def all_gather_simulator(target_pair):
'''
Simulating all-gather operation, analyze the communication cost
and simulate the influence of the DimSpec.
We don't allow uncontiguous layout, such as all-gather(S012)->S02 is NOT allowed.
Therefore, all gather operation just remove the last element in shard list,
e.g.:
all-gather(S01) -> S0
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element describes which logical axis will be sharded in that dimension.
'''
_, shard_list = target_pair
new_shard_list = shard_list[:-1]
return new_shard_list
def all_to_all_simulator(f_target_pair, b_target_pair):
'''
Simulating all-to-all operation, analyze the communication cost
and simulate the influence of the DimSpec.
We BANNED all representations which shard_list in decreasing order,
such as S10, so all-to-all(S0, S1) -> RS01 is NOT allowed.
Therefore, if the behind shard_list is not None, we just extend it to the front shard_list.
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element describes which logical axis will be sharded in that dimension.
e.g.:
all-to-all(S0, S1) -> [S01, R]
all-to-all(S0, R) -> [R, S0]
Otherwise, we extend the front shard_list to behind.
e.g.:
all-to-all(R, S1) -> [S1, R]
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element describes which logical axis will be sharded in that dimension.
'''
_, f_shard_list = f_target_pair
_, b_shard_list = b_target_pair
if not len(b_shard_list):
b_shard_list.extend(f_shard_list)
f_shard_list = []
else:
f_shard_list.extend(b_shard_list)
b_shard_list = []
return f_shard_list, b_shard_list
def shard_simulator(target_pair, legal_sharding_dims):
'''
Simulating shard operation, analyze the communication cost(always ZERO)
and simulate the influence of the DimSpec.
We don't allow uncontiguous layout, such as shard(S0)->S02 is NOT allowed.
In addition, We BANNED all representations which shard_list in decreasing order,
such as S10, so shard(S0) -> S10 is NOT allowed.
Therefore, for the R dimension, we could just append any legal sharding dim on it.
e.g.:
shard(R) -> S0
For the S dimension, we need to make sure the shard_list after sharding still keep rising order.
e.g:
shard(S0) -> S01
Argument:
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
and the second element decribes which logical axis will be sharded in that dimension.
'''
_, shard_list = target_pair
shard_list_list = []
for dim in legal_sharding_dims:
if len(shard_list) != 0 and dim <= shard_list[-1]:
continue
new_shard_list = shard_list + [dim]
shard_list_list.append(new_shard_list)
return shard_list_list
def mix_gather_simulator(f_target_pair, b_target_pair):
'''
Assume index of f and b target pairs are 'f' and 'b'
S0S1 => Input: (f, [0]), (b, [1]) Output: [b, f], (1, 0)
S1S0 => Input: (f, [1]), (b, [0]) Output: [b, f], (0, 1)
S01R => Input: (f, [0, 1]), (b, []) Output: [f], (1, 1)
RS01 => Input: (f, []), (b, [0, 1]) Output: [b], (1, 1)
S10R => Input: (f, [0, 1]), (b, []) Output: [f], (0, 0)
RS10 => Input: (f, []), (b, [0, 1]) Output: [b], (0, 0)
'''
if f_target_pair[1] and b_target_pair[1]:
leading_dim = b_target_pair[1] > f_target_pair[1]
return [b_target_pair[0], f_target_pair[0]], [int(leading_dim), int(leading_dim ^ 1)]
if f_target_pair[1]:
leading_dim = f_target_pair[1][0] < f_target_pair[1][1]
return [
f_target_pair[0],
], [int(leading_dim), int(leading_dim)]
if b_target_pair[1]:
leading_dim = b_target_pair[1][0] < b_target_pair[1][1]
return [
b_target_pair[0],
], [int(leading_dim), int(leading_dim)]
# The function is credited to PyTorch Team
def named_params_with_colotensor(
module: nn.Module,
prefix: str = '',
recurse: bool = True,
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
r"""Returns an iterator over module parameters (together with the
ColoTensor parameters), yielding both the name of the parameter
as well as the parameter itself. This is typically passed to a
:class:torchshard._shard.sharded_optim.ShardedOptimizer
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
(string, Union[Tensor, ColoTensor]): Tuple containing
the name and parameter (or ColoTensor parameter)
Example:
>>> model = torch.nn.Linear(*linear_size)
>>> delattr(model.weight)
>>> setattr(model.weight, ColoTensor(...))
>>> for name, param in named_params_with_colotensor(model):
>>> if name in ['weight']:
>>> print(param.size())
"""
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
memo = set()
for mod_prefix, mod in modules:
# find all sharded tensor params
for name, val in vars(mod).items():
if isinstance(val, ColoTensor) and val not in memo:
memo.add(val)
name = mod_prefix + ('.' if mod_prefix else '') + name
yield name, val
# find all nn.Parameters
for name, val in module.named_parameters():
yield name, val
def _convert_tensor(tensor: torch.Tensor) -> ColoTensor:
return ColoTensor(tensor)
def convert_parameter(module: torch.nn.Module, param_name: str):
# Perform some validation first.
if not hasattr(module, param_name):
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
tensor = getattr(module, param_name)
if not isinstance(tensor, torch.Tensor):
raise ValueError(
f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
if not tensor.is_contiguous():
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
st = _convert_tensor(tensor)
# Replace param with ColoTensor.
# Need to delete the attribute first since param_name might be
# torch.nn.Parameter and can't be replaced with ColoTensor which is
# not torch.nn.Parameter.
delattr(module, param_name)
# Now we can set the attribute appropriately.
setattr(module, param_name, st)
def convert_dim_partition_dict(dim_size: int, dim_partition_dict: Dict[int, List[int]]) -> Dict[int, List[int]]:
'''
This method is used to convert the negative dim value to positive.
'''
dims_to_convert = []
for dim, mesh_list in dim_partition_dict.items():
if dim < 0:
dims_to_convert.append(dim)
for dim in dims_to_convert:
dim_partition_dict.pop(dim)
dim_partition_dict[dim_size + dim] = mesh_list
return dim_partition_dict
def merge_same_dim_mesh_list(dim_size: int, dim_partition_dict: Dict[int, List[int]]) -> Dict[int, List[int]]:
'''
This method is used to merge the different key value which points to same physical position.
For example:
dim_partition_dict: {1 :[0], -1: [1]} or {1: [0], 1: [1]} for a 2d tensor, the dim 1 and -1 point same physical position.
In this method, above dim_partition_dict will be converted to {1: [0, 1]}
'''
converted_dim_partition_dict = {}
for dim, mesh_list in dim_partition_dict.items():
if dim < 0:
dim = dim_size + dim
if dim not in converted_dim_partition_dict:
converted_dim_partition_dict[dim] = mesh_list
else:
converted_dim_partition_dict[dim].extend(mesh_list)
return converted_dim_partition_dict