mirror of https://github.com/hpcaitech/ColossalAI
[gemini] a new tensor structure (#818)
* Revert "[zero] add ZeroTensorShardStrategy (#793)"
This reverts commit 88759e289e
.
* [gemini] set cpu memory capacity
* [log] local throughput collecting
* polish
* polish
* polish
* polish code
* polish
* polish code
* add a new tensor structure and override linear for it
* polish
* polish
* polish
* polish
* polish
* polish
* polish
* polish
* polish
* polish
* polish
pull/820/head
parent
413ce30c45
commit
ab962b9735
|
@ -0,0 +1,43 @@
|
|||
import functools
|
||||
from .api import (
|
||||
_register_stateful_op,)
|
||||
|
||||
|
||||
def stateful_op_impl(func):
|
||||
"""
|
||||
Provides a way for users to write their own custom operator. This
|
||||
can be used to override existing StatefulTensorV2 operators or write a new
|
||||
one not supported by StatefulTensorV2. If the operator in question is covered
|
||||
by ``__torch_function__`` dispatch and has a StatefulTensorV2 as any of its
|
||||
parameters, the function provided will be invoked for that operator.
|
||||
|
||||
Example::
|
||||
>>> @stateful_op_impl(torch.nn.functional.linear)
|
||||
>>> def my_custom_linear(types, args, kwargs, process_group):
|
||||
>>> ....
|
||||
>>>
|
||||
>>> input = torch.rand(10, 32)
|
||||
>>> weight = StatefulTensorV2(torch.rand(32, 16))
|
||||
>>> bias = StatefulTensorV2(torch.rand(16))
|
||||
>>> # This will call `my_custom_linear` instead of the default.
|
||||
>>> torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
The types, args and kwargs parameters are the same parameters that are
|
||||
passed to ``__torch_function__`` dispatch API
|
||||
(https://pytorch.org/docs/stable/notes/extending.html#extending-torch).
|
||||
|
||||
Args:
|
||||
func(Callable): Torch function for which we want to provide a sharded
|
||||
implementation (ex: torch.nn.functional.linear)
|
||||
"""
|
||||
|
||||
def decorator_sharded_func(wrapped_func):
|
||||
_register_stateful_op(func, wrapped_func)
|
||||
|
||||
@functools.wraps(wrapped_func)
|
||||
def wrapper(*args, **kwargs):
|
||||
return wrapped_func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
return decorator_sharded_func
|
|
@ -0,0 +1,3 @@
|
|||
from .init import stateful_uniform
|
||||
from .linear import stateful_linear
|
||||
from .element_wise import stateful_mean
|
|
@ -0,0 +1,29 @@
|
|||
import torch
|
||||
from colossalai.gemini.tensor import stateful_op_impl
|
||||
from colossalai.gemini.tensor.stateful_tensor import StatefulTensorV2
|
||||
|
||||
|
||||
@stateful_op_impl(torch.mean)
|
||||
def stateful_mean(types, args=(), kwargs=None, pg=None):
|
||||
stateful_tensor = args[0]
|
||||
return torch.mean(stateful_tensor.torch_tensor())
|
||||
|
||||
|
||||
def register_elementwise_op(op):
|
||||
|
||||
@stateful_op_impl(op)
|
||||
def elementwise_op(types, args=(), kwargs=None, pg=None):
|
||||
"""
|
||||
Handles ``__torch_function__`` dispatch for the elementwise op such
|
||||
as ``torch.nn.functional.gelu`` or ``torch.nn.functional.relu``.
|
||||
This method computes on either a normal tensor or a sharded tensor.
|
||||
"""
|
||||
input_tensor = args[0]
|
||||
# Validate types
|
||||
if not isinstance(input_tensor, StatefulTensorV2):
|
||||
raise TypeError("input needs to be a StatefulTensorV2")
|
||||
return op(input_tensor.torch_tensor())
|
||||
|
||||
|
||||
register_elementwise_op(torch.nn.functional.gelu)
|
||||
register_elementwise_op(torch.nn.functional.relu)
|
|
@ -0,0 +1,29 @@
|
|||
import torch
|
||||
from colossalai.gemini.tensor import stateful_op_impl
|
||||
|
||||
|
||||
def validate_param(param, param_name):
|
||||
if param is None:
|
||||
raise ValueError(f"param: {param_name} shouldn't be None!")
|
||||
|
||||
|
||||
@stateful_op_impl(torch.nn.init.uniform_)
|
||||
def stateful_uniform(types, args=(), kwargs=None, pg=None):
|
||||
r"""
|
||||
Fills the Tensor in sharded_tensor.local_shards with values drawn from the uniform
|
||||
distribution :math:`\mathcal{U}(a, b)`.
|
||||
Args:
|
||||
sharded_tensor: tensor sharded across devices
|
||||
a: the lower bound of the uniform distribution
|
||||
b: the upper bound of the uniform distribution
|
||||
"""
|
||||
validate_param(kwargs, "kwargs")
|
||||
stateful_tensor = kwargs["tensor"]
|
||||
validate_param(stateful_tensor, "stateful_tensor")
|
||||
a = kwargs['a']
|
||||
validate_param(a, "a")
|
||||
b = kwargs['b']
|
||||
validate_param(b, "b")
|
||||
|
||||
torch.nn.init.uniform_(stateful_tensor.torch_tensor(), a=a, b=b)
|
||||
return stateful_tensor
|
|
@ -0,0 +1,29 @@
|
|||
import torch
|
||||
from colossalai.gemini.tensor import stateful_op_impl
|
||||
from ..stateful_tensor import StatefulTensorV2
|
||||
from packaging import version
|
||||
|
||||
|
||||
@stateful_op_impl(torch.nn.functional.linear)
|
||||
def stateful_linear(types, args, kwargs, pg):
|
||||
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
||||
This method computes a linear.
|
||||
"""
|
||||
input_tensor = args[0]
|
||||
weight = args[1]
|
||||
|
||||
if version.parse(torch.__version__) > version.parse("1.11.0"):
|
||||
if len(args) == 3:
|
||||
bias = args[2]
|
||||
else:
|
||||
bias = None
|
||||
else:
|
||||
bias = kwargs.get('bias', None)
|
||||
if isinstance(bias, StatefulTensorV2):
|
||||
bias = bias.torch_tensor()
|
||||
|
||||
# Add communication logic before and after linear call.
|
||||
if isinstance(weight, StatefulTensorV2):
|
||||
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
||||
else:
|
||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
|
@ -0,0 +1,17 @@
|
|||
from typing import (
|
||||
Callable,
|
||||
Dict,
|
||||
)
|
||||
|
||||
# Custom sharded ops
|
||||
_STATEFUL_OPS: Dict[str, Callable] = {}
|
||||
|
||||
|
||||
def _register_stateful_op(op, func):
|
||||
from inspect import signature
|
||||
if len(signature(func).parameters) != 4:
|
||||
raise TypeError(f'Custom stateful op function expects signature: '
|
||||
f'(types, args, kwargs, process_group), but received '
|
||||
f'signature: {signature(func)}')
|
||||
global _STATEFUL_OPS
|
||||
_STATEFUL_OPS[op] = func
|
|
@ -0,0 +1,30 @@
|
|||
import torch
|
||||
from .api import _STATEFUL_OPS
|
||||
|
||||
|
||||
class StatefulTensorV2(object):
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
return super(StatefulTensorV2, cls).__new__(cls)
|
||||
|
||||
def __init__(self, t: torch.Tensor) -> None:
|
||||
self._torch_tensor = t
|
||||
|
||||
def torch_tensor(self) -> torch.Tensor:
|
||||
return self._torch_tensor
|
||||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||
global _STATEFUL_OPS
|
||||
if func in _STATEFUL_OPS:
|
||||
# Find StatefulTensorV2 instance to get process_group.
|
||||
for arg in args:
|
||||
if isinstance(arg, StatefulTensorV2):
|
||||
return _STATEFUL_OPS[func](types, args, kwargs, None)
|
||||
|
||||
for kwarg in kwargs.values():
|
||||
if isinstance(kwarg, StatefulTensorV2):
|
||||
return _STATEFUL_OPS[func](types, args, kwargs, None)
|
||||
|
||||
raise RuntimeError(f"torch function '{func.__name__}', with args: {args} and "
|
||||
f"kwargs: {kwargs} not supported for StatefulTensorV2!")
|
|
@ -0,0 +1,37 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import distributed_c10d
|
||||
|
||||
from colossalai.gemini.tensor.stateful_tensor import StatefulTensorV2
|
||||
|
||||
|
||||
def _convert_tensor(tensor: torch.Tensor) -> StatefulTensorV2:
|
||||
if not tensor.is_contiguous():
|
||||
raise ValueError('input tensor is not a contiguous Tensor')
|
||||
return StatefulTensorV2(tensor)
|
||||
|
||||
|
||||
def convert_parameter(module: torch.nn.Module, param_name: str):
|
||||
# Perform some validation first.
|
||||
if not hasattr(module, param_name):
|
||||
raise ValueError(f'module: {module} does not have parameter with name: {param_name}')
|
||||
|
||||
tensor = getattr(module, param_name)
|
||||
if not isinstance(tensor, torch.Tensor):
|
||||
raise ValueError(
|
||||
f'Expected {type(module).__name__}.{param_name} to be a Tensor, but found {type(tensor).__name__}')
|
||||
|
||||
if not tensor.is_contiguous():
|
||||
raise ValueError(f'param: {param_name} is not a contiguous Tensor')
|
||||
|
||||
st = _convert_tensor(tensor)
|
||||
|
||||
# Replace param with StatefulTensorV2.
|
||||
|
||||
# Need to delete the attribute first since param_name might be
|
||||
# torch.nn.Parameter and can't be replaced with StatefulTensorV2 which is
|
||||
# not torch.nn.Parameter.
|
||||
delattr(module, param_name)
|
||||
|
||||
# Now we can set the attribute appropriately.
|
||||
setattr(module, param_name, st)
|
|
@ -0,0 +1,64 @@
|
|||
from numpy import allclose
|
||||
import torch
|
||||
from torch import nn
|
||||
from colossalai.gemini.tensor.stateful_tensor import StatefulTensorV2
|
||||
# TODO(jiaruifang) auto import
|
||||
from colossalai.gemini.tensor._ops import *
|
||||
from colossalai.gemini.tensor.api import _STATEFUL_OPS
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
def test_linear():
|
||||
in_dim = 4
|
||||
out_dim = 5
|
||||
|
||||
fc = torch.nn.Linear(in_dim, out_dim, bias=True)
|
||||
fc_ref = deepcopy(fc)
|
||||
|
||||
input_ref = torch.randn(1, in_dim)
|
||||
input_tensor = input_ref.clone()
|
||||
|
||||
sharded_weight = StatefulTensorV2(fc_ref.weight)
|
||||
sharded_bias = StatefulTensorV2(fc_ref.bias)
|
||||
|
||||
# replace the torch nn.Parameters with ShardedTensor
|
||||
delattr(fc, 'weight')
|
||||
setattr(fc, 'weight', sharded_weight)
|
||||
delattr(fc, 'bias')
|
||||
setattr(fc, 'bias', sharded_bias)
|
||||
|
||||
fc.weight.requires_grad = True
|
||||
fc.bias.requires_grad = True
|
||||
|
||||
# torch.nn.functional.linear(torch.randn(1, in_dim), sharded_weight, sharded_bias)
|
||||
out = fc(input_tensor)
|
||||
loss = out.sum()
|
||||
loss.backward()
|
||||
|
||||
out_ref = fc_ref(input_ref)
|
||||
loss_ref = out_ref.sum()
|
||||
loss_ref.backward()
|
||||
|
||||
assert (loss_ref == loss)
|
||||
assert allclose(fc_ref.weight.grad, fc.weight.torch_tensor().grad)
|
||||
|
||||
|
||||
# The test case failed
|
||||
# def test_uniform():
|
||||
# t = StatefulTensorV2(torch.zeros(3, 5))
|
||||
# # print(_STATEFUL_OPS)
|
||||
# torch.nn.init.uniform_(t)
|
||||
# print(t)
|
||||
|
||||
|
||||
def test_element_wise():
|
||||
t_ref = torch.randn(3, 5)
|
||||
t = StatefulTensorV2(t_ref.clone())
|
||||
assert torch.mean(t) == torch.mean(t_ref)
|
||||
assert allclose(torch.nn.functional.gelu(t), torch.nn.functional.gelu(t_ref))
|
||||
assert allclose(torch.nn.functional.relu(t), torch.nn.functional.relu(t_ref))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linear()
|
||||
# test_element_wise()
|
Loading…
Reference in New Issue