|
|
|
from abc import ABC, abstractmethod
|
|
|
|
import os, shutil
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import pytest
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
|
|
from torch.optim.lr_scheduler import MultiplicativeLR
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
|
|
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ShardSpec, ProcessGroup
|
|
|
|
from colossalai.nn.parallel.data_parallel import ColoDDP
|
|
|
|
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
|
|
|
|
|
|
|
|
|
|
class DummyDataGenerator(ABC):
|
|
|
|
|
|
|
|
def __init__(self, length=10):
|
|
|
|
self.length = length
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def generate(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self.step = 0
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __next__(self):
|
|
|
|
if self.step < self.length:
|
|
|
|
self.step += 1
|
|
|
|
return self.generate()
|
|
|
|
else:
|
|
|
|
raise StopIteration
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.length
|
|
|
|
|
|
|
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator):
|
|
|
|
|
|
|
|
def __init__(self, batch_size, category, feature_size, length=10):
|
|
|
|
super().__init__(length)
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.category = category
|
|
|
|
self.feature_size = feature_size
|
|
|
|
|
|
|
|
def generate(self):
|
|
|
|
image_dict = {}
|
|
|
|
image_dict['pixel_values'] = torch.rand(self.batch_size, self.feature_size, device=get_current_device()) * 2 - 1
|
|
|
|
image_dict['label'] = torch.randint(self.category, (self.batch_size,),
|
|
|
|
dtype=torch.int64,
|
|
|
|
device=get_current_device())
|
|
|
|
return image_dict
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self, in_features, out_features, hidden_features=None):
|
|
|
|
super().__init__()
|
|
|
|
if hidden_features is None:
|
|
|
|
hidden_features = out_features
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
|
|
self.activation = nn.ReLU()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.activation(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def init_1d_row_for_linear_weight_spec(model, pg: ProcessGroup):
|
|
|
|
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
|
|
|
with DistSpecManager.no_grad():
|
|
|
|
for n, p in model.named_parameters():
|
|
|
|
if 'weight' in n:
|
|
|
|
p.set_process_group(pg)
|
|
|
|
p.set_tensor_spec(*spec)
|
|
|
|
|
|
|
|
|
|
|
|
def check_param_equal(model, torch_model):
|
|
|
|
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
|
|
|
|
assert torch.allclose(torch_p, p, rtol=1e-3, atol=1e-1)
|
|
|
|
|
|
|
|
|
|
|
|
def remove(path):
|
|
|
|
""" param <path> could either be relative or absolute. """
|
|
|
|
if os.path.isfile(path) or os.path.islink(path):
|
|
|
|
os.remove(path)
|
|
|
|
elif os.path.isdir(path):
|
|
|
|
shutil.rmtree(path)
|
|
|
|
else:
|
|
|
|
raise ValueError("file {} is not a file or dir.".format(path))
|
|
|
|
|
|
|
|
|
|
|
|
def run_checkpoint(init_spec_func, use_ddp, use_mp_reload, test_scheduler, pg):
|
|
|
|
num_epoch = 5
|
|
|
|
warmup_epoch = 2
|
|
|
|
|
|
|
|
batch = 3
|
|
|
|
feature = 32
|
|
|
|
category = 16
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model = MLP(feature, category)
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
|
|
model_reload = MLP(feature, category)
|
|
|
|
|
|
|
|
model = model.cuda()
|
|
|
|
model_reload = model_reload.cuda()
|
|
|
|
if use_ddp:
|
|
|
|
model = ColoDDP(model, pg)
|
|
|
|
model_reload = ColoDDP(model_reload, pg)
|
|
|
|
|
|
|
|
init_spec_func(model, pg)
|
|
|
|
if use_mp_reload:
|
|
|
|
init_spec_func(model_reload, pg)
|
|
|
|
|
|
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
|
|
|
|
optimizer_reload = torch.optim.Adam(model_reload.parameters(),
|
|
|
|
lr=0.001,
|
|
|
|
betas=(0.9, 0.999),
|
|
|
|
eps=1e-08,
|
|
|
|
weight_decay=0)
|
|
|
|
|
|
|
|
lr_scheduler = None
|
|
|
|
if test_scheduler == 'colossalai_cosine_warmup':
|
|
|
|
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=num_epoch, warmup_steps=warmup_epoch)
|
|
|
|
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload,
|
|
|
|
total_steps=num_epoch,
|
|
|
|
warmup_steps=warmup_epoch)
|
|
|
|
elif test_scheduler == 'torch_cosine':
|
|
|
|
lr_scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=num_epoch)
|
|
|
|
lr_scheduler_reload = CosineAnnealingLR(optimizer=optimizer_reload, T_max=num_epoch)
|
|
|
|
elif test_scheduler == 'torch_lambda':
|
|
|
|
lr_lambda = lambda epoch: 0.95
|
|
|
|
lr_scheduler = MultiplicativeLR(optimizer=optimizer, lr_lambda=lr_lambda)
|
|
|
|
lr_scheduler_reload = MultiplicativeLR(optimizer=optimizer_reload, lr_lambda=lr_lambda)
|
|
|
|
else:
|
|
|
|
raise TypeError(f"{test_scheduler} is invalid")
|
|
|
|
|
|
|
|
save_checkpoint('./checkpoint', 0, model, optimizer, lr_scheduler)
|
|
|
|
dist.barrier()
|
|
|
|
load_checkpoint('./checkpoint', 0, model_reload, optimizer_reload, lr_scheduler_reload)
|
|
|
|
|
|
|
|
# Since model is sharded, we merge them before param checking.
|
|
|
|
for p in model.parameters():
|
|
|
|
p.to_replicate_()
|
|
|
|
|
|
|
|
for p in model_reload.parameters():
|
|
|
|
p.to_replicate_()
|
|
|
|
|
|
|
|
check_param_equal(model, model_reload)
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port, use_ddp, use_mp_reload, test_scheduler):
|
|
|
|
if use_ddp and world_size == 1:
|
|
|
|
return
|
|
|
|
tp_world_size = world_size // 2 if use_ddp else world_size
|
|
|
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
|
|
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, use_mp_reload, test_scheduler=test_scheduler, pg=pg)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 2])
|
|
|
|
@pytest.mark.parametrize('use_ddp', [True, False])
|
|
|
|
@pytest.mark.parametrize('use_mp_reload', [True, False])
|
|
|
|
@pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda'])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_checkpoint(world_size, use_ddp, use_mp_reload, test_scheduler):
|
|
|
|
if not os.path.isdir('./checkpoint'):
|
|
|
|
os.mkdir('./checkpoint')
|
|
|
|
run_func = partial(run_dist,
|
|
|
|
world_size=world_size,
|
|
|
|
port=free_port(),
|
|
|
|
use_ddp=use_ddp,
|
|
|
|
use_mp_reload=use_mp_reload,
|
|
|
|
test_scheduler=test_scheduler)
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
remove('./checkpoint')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_checkpoint(2, True, False, "torch_cosine")
|