[checkpoint]support generalized scheduler (#1222)

pull/1231/head
Yi Zhao 2022-07-07 18:16:38 +08:00 committed by GitHub
parent a98319f023
commit 04537bf83e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 85 additions and 20 deletions

View File

@ -2,6 +2,7 @@ from torch.optim.lr_scheduler import _LRScheduler
class _enable_get_lr_call:
def __init__(self, o):
self.o = o
@ -33,6 +34,16 @@ class DelayerScheduler(_LRScheduler):
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
if isinstance(state_dict['after_scheduler'], _LRScheduler):
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
del state_dict['after_scheduler']
else:
raise NotImplementedError()
return state_dict
def get_lr(self):
if self.last_epoch >= self.delay_epochs:
if not self.finished:
@ -73,6 +84,16 @@ class WarmupScheduler(_LRScheduler):
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
if isinstance(state_dict['after_scheduler'], _LRScheduler):
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
del state_dict['after_scheduler']
else:
raise NotImplementedError()
return state_dict
def get_lr(self):
if self.last_epoch >= self.warmup_epochs:
if not self.finished:
@ -118,6 +139,16 @@ class WarmupDelayerScheduler(_LRScheduler):
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
if isinstance(state_dict['after_scheduler'], _LRScheduler):
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
del state_dict['after_scheduler']
else:
raise NotImplementedError()
return state_dict
def get_lr(self):
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
if not self.finished:

View File

@ -29,7 +29,6 @@ def _scan_for_pg_from_args(args, kwargs) -> ProcessGroup:
pg = _scan_for_pg_from_args(elem, {})
if pg is not None:
return pg
print(type(elem), elem, isinstance(elem, (list, tuple)))
for k, v in kwargs:
if isinstance(v, ColoTensor):
pg = v.get_process_group()

View File

@ -2,10 +2,20 @@ import torch
import torch.nn as nn
import torch.distributed as dist
import collections
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
import inspect
from colossalai.utils.model.colo_init_context import colo_state_dict
def filter_dict(dict_to_filter, thing_with_kwargs):
sig = inspect.signature(thing_with_kwargs)
filter_keys = [param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD]
filter_dict = {}
for filter_key in filter_keys:
if filter_key in dict_to_filter:
filter_dict[filter_key] = dict_to_filter[filter_key]
return filter_dict
def save_checkpoint(dire: str,
epoch: int,
model: torch.nn.Module,
@ -25,9 +35,7 @@ def save_checkpoint(dire: str,
model_state = {'epoch': epoch, 'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)}
if dist.get_rank() == 0:
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
lr_scheduler_dict = lr_scheduler.state_dict()
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler_dict}
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict()}
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
@ -55,8 +63,13 @@ def load_checkpoint(dire,
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
optimizer.load_state_dict(optim_state['optimizer'])
lr_scheduler_dict = optim_state['lr_scheduler']
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(optimizer, after_scheduler_dict['T_max'],
after_scheduler_dict['eta_min'],
after_scheduler_dict['last_epoch'])
if 'after_scheduler_type' in lr_scheduler_dict:
after_scheduler_type = lr_scheduler_dict.pop('after_scheduler_type')
after_scheduler_dict = lr_scheduler_dict.pop('after_scheduler_dict')
reload_scheduler = getattr(torch.optim.lr_scheduler, after_scheduler_type)
filtered_dict = filter_dict(after_scheduler_dict, reload_scheduler)
lr_scheduler_dict['after_scheduler'] = reload_scheduler(
optimizer,
**filtered_dict,
)
lr_scheduler.load_state_dict(lr_scheduler_dict)

View File

@ -8,6 +8,8 @@ from functools import partial
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.lr_scheduler import MultiplicativeLR
import colossalai
from colossalai.testing import rerun_if_address_is_in_use
@ -102,10 +104,14 @@ def remove(path):
raise ValueError("file {} is not a file or dir.".format(path))
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
def run_checkpoint(init_spec_func, use_ddp, test_epoch, test_scheduler, pg):
num_epoch = 5
warmup_epoch = 2
batch = 3
feature = 32
category = 16
train_dataloader = DummyDataLoader(batch, category, feature, length=16)
with ColoInitContext(device=get_current_device()):
model = MLP(feature, category)
@ -129,14 +135,25 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
weight_decay=0)
optimizer_ref = torch.optim.Adam(model_ref.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=20, warmup_steps=5)
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload, total_steps=20, warmup_steps=5)
lr_scheduler_ref = CosineAnnealingWarmupLR(optimizer=optimizer_ref, total_steps=20, warmup_steps=5)
if test_scheduler == 'colossalai_cosine_warmup':
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=num_epoch, warmup_steps=warmup_epoch)
lr_scheduler_reload = CosineAnnealingWarmupLR(optimizer=optimizer_reload,
total_steps=num_epoch,
warmup_steps=warmup_epoch)
elif test_scheduler == 'torch_cosine':
lr_scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=num_epoch)
lr_scheduler_reload = CosineAnnealingLR(optimizer=optimizer_reload, T_max=num_epoch)
elif test_scheduler == 'torch_lambda':
lr_lambda = lambda epoch: 0.95
lr_scheduler = MultiplicativeLR(optimizer=optimizer, lr_lambda=lr_lambda)
lr_scheduler_reload = MultiplicativeLR(optimizer=optimizer_reload, lr_lambda=lr_lambda)
init_spec_func(model, pg)
init_spec_func(model_ref, pg)
for epoch in range(0, 20):
for epoch in range(0, num_epoch):
if epoch <= test_epoch:
for i, image_dict in enumerate(train_dataloader):
if use_ddp:
@ -155,7 +172,6 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
for ref_p, p in zip(model_ref.parameters(), model.parameters()):
ref_p.data.copy_(p)
optimizer_ref = copy.deepcopy(optimizer)
lr_scheduler_ref = copy.deepcopy(lr_scheduler)
check_param_equal(model, model_ref)
save_checkpoint('./checkpoint', epoch, model, optimizer, lr_scheduler)
@ -189,28 +205,34 @@ def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
check_param_equal(model_ref, model_reload)
def run_dist(rank, world_size, port, use_ddp, test_epoch):
def run_dist(rank, world_size, port, use_ddp, test_epoch, test_scheduler):
if use_ddp and world_size == 1:
return
tp_world_size = world_size // 2 if use_ddp else world_size
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=world_size)
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, test_epoch, pg)
run_checkpoint(init_1d_row_for_linear_weight_spec, use_ddp, test_epoch, test_scheduler, pg)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [4])
@pytest.mark.parametrize('use_ddp', [True])
@pytest.mark.parametrize('test_epoch', [1, 2, 3])
@pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda'])
@rerun_if_address_is_in_use()
def test_checkpoint(world_size, use_ddp, test_epoch):
def test_checkpoint(world_size, use_ddp, test_epoch, test_scheduler):
if not os.path.isdir('./checkpoint'):
os.mkdir('./checkpoint')
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp, test_epoch=test_epoch)
run_func = partial(run_dist,
world_size=world_size,
port=free_port(),
use_ddp=use_ddp,
test_epoch=test_epoch,
test_scheduler=test_scheduler)
mp.spawn(run_func, nprocs=world_size)
remove('./checkpoint')
if __name__ == '__main__':
test_checkpoint(4, True, 1)
test_checkpoint(4, True, 1, 1)