[tensor] torch function return colotensor (#1229)

pull/1222/head^2
Jiarui Fang 2022-07-07 18:09:18 +08:00 committed by GitHub
parent 5581170890
commit a98319f023
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 42 additions and 21 deletions

View File

@ -17,14 +17,12 @@ def register_elementwise_op(op):
"""
output = op(input_tensor, *args, **kwargs)
if isinstance(input_tensor, ColoTensor):
if not isinstance(output, torch.Tensor):
raise NotImplementedError
return ColoTensor.from_torch_tensor(output,
spec=ColoTensorSpec(input_tensor.process_group,
dist_attr=input_tensor.dist_spec,
compute_attr=input_tensor.compute_spec))
spec=ColoTensorSpec(input_tensor.get_process_group(),
dist_attr=input_tensor.dist_spec))
# Tensor op

View File

@ -22,7 +22,7 @@ def colo_linear_1Drow(input_tensor: ColoTensor, weight: ColoTensor, bias: Option
assert not bias.has_compute_spec(), 'Invalid bias spec for 1Drow Linear op'
output = output + bias
pg = input_tensor.get_process_group()
pg = weight.get_process_group()
output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(pg, distspec.replicate()))
return output
@ -61,6 +61,7 @@ def colo_linear_imp(input_tensor: GeneralTensor,
"""
assert isinstance(weight, ColoTensor)
pg = weight.get_process_group()
assert pg
input_tensor = convert_to_colo_tensor(input_tensor, pg)
bias = convert_to_colo_tensor(bias, pg)
# input_tensor, weight, bias = tuple(map(convert_to_colo_tensor, (input_tensor, weight, bias)))
@ -70,7 +71,7 @@ def colo_linear_imp(input_tensor: GeneralTensor,
if not weight.has_compute_spec(): # No Model Parallel Applied
assert weight.is_replicate(), 'Invalid weight spec for native Linear op'
assert bias is None or bias.is_replicate(), 'Invalid bias spec for native Linear op'
ret_tensor = ColoTensor.from_torch_tensor(F.linear(input_tensor, weight, bias))
ret_tensor = ColoTensor.from_torch_tensor(F.linear(input_tensor, weight, bias), spec=ColoTensorSpec(pg))
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.is_shard_1dcol() and (bias is None or bias.is_replicate()):
mode = 'row'

View File

@ -35,7 +35,7 @@ def colo_cross_entropy(input_tensor: GeneralTensor,
elif input_tensor.has_compute_spec(): # Single Model Parallel Applied
if input_tensor.is_shard_1dcol():
output = VocabParallelCrossEntropyLoss1D()(input_tensor, target)
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg))
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg)).to_replicate()
else:
raise NotImplementedError
else:

View File

@ -11,12 +11,30 @@ from colossalai.tensor.distspec import _DistSpec, DistPlacementPattern
from typing import Optional
def _check_output(output):
if not isinstance(output, torch.Tensor):
raise RuntimeError
def _convert_output(output, pg: ProcessGroup):
if type(output) == torch.Tensor:
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg))
elif isinstance(output, (list, tuple)):
output = type(output)(_check_output(o) for o in output)
return output
return type(output)(_convert_output(o, pg) for o in output)
else:
return output
def _scan_for_pg_from_args(args, kwargs) -> ProcessGroup:
for elem in args:
if isinstance(elem, ColoTensor):
pg = elem.get_process_group()
return pg
elif isinstance(elem, (list, tuple)):
pg = _scan_for_pg_from_args(elem, {})
if pg is not None:
return pg
print(type(elem), elem, isinstance(elem, (list, tuple)))
for k, v in kwargs:
if isinstance(v, ColoTensor):
pg = v.get_process_group()
return pg
return None
class ColoTensor(torch.Tensor):
@ -108,6 +126,7 @@ class ColoTensor(torch.Tensor):
dist_spec (_DistSpec): target dist spec.
"""
assert isinstance(dist_spec, _DistSpec)
assert self.process_group
self._convert_to_dist_spec(dist_spec)
def set_tensor_spec(self, dist_spec, compute_spec):
@ -136,12 +155,11 @@ class ColoTensor(torch.Tensor):
if func in get_default_nowrap_functions():
return ret
else:
# TODO(jiaruifang) its parallel Op's duty to convert output activations
return ret
# return _check_output(ret)
pg = _scan_for_pg_from_args(args, kwargs)
return _convert_output(ret, pg)
def __repr__(self):
return f'ColoTensor: {super().__repr__()}'
return f'ColoTensor: {super().__repr__()}\n dist spec: {self.dist_spec}\n process group: {self.process_group}'
def _convert_to_dist_spec(self, dist_spec: _DistSpec) -> None:
"""_convert_to_dist_spec

View File

@ -19,6 +19,10 @@ class PyTorchProcessGroupDict(metaclass=SingletonMeta):
pg_key = (backend, rank_tuple)
if pg_key not in self.dict:
self.logger = get_dist_logger('ProcessGroup')
self.logger.info(f'NCCL initialize TP group on {rank_list}', ranks=[0])
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
return self.dict[pg_key]
@ -92,10 +96,6 @@ class ProcessGroup:
self._tp_process_group = PYTORCHPGDICT_.get(self._tp_rank_list, 'nccl')
self._dp_process_group = PYTORCHPGDICT_.get(self._dp_rank_list, 'nccl')
self.logger = get_dist_logger('ProcessGroup')
self.logger.info(
f'{self._rank} NCCL initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
self._has_cpu_groups = False
self._cpu_dp_process_group = None
self._cpu_tp_process_group = None

View File

@ -113,6 +113,7 @@ def run_1d_hybrid_tp(model_name):
torch.distributed.broadcast(data, 0, group=pg.tp_process_group())
torch.distributed.broadcast(label, 0, group=pg.tp_process_group())
# Bcast rank0 data to all processes
if criterion:
output = model(data)

View File

@ -39,7 +39,7 @@ def check_spec_eq(tensor, other):
assert isinstance(tensor, ColoTensor) and isinstance(other, ColoTensor)
for k in dir(tensor.dist_spec):
if not k.startswith('__'):
assert hasattr(other.dist_spec, k)
assert hasattr(other.dist_spec, k), f"{k}"
assert getattr(tensor.dist_spec, k) == getattr(other.dist_spec, k)
@ -48,6 +48,7 @@ def check_element_wise_ops():
pg = ProcessGroup(tp_degree=world_size)
t = torch.rand(2, 2)
x = ColoTensor(t, spec=ColoTensorSpec(pg, distspec.shard([0], [pg.tp_world_size()])))
check_spec_eq(x, x.cuda())
assert torch.equal(x.cuda(), t.cuda())
check_spec_eq(x, torch.abs(x))

View File

@ -49,6 +49,8 @@ def _run_operand():
t_ref_res = t_ref + t_ref
t_res = t + t
assert isinstance(t_res, ColoTensor)
assert torch.allclose(t_ref_res, t_res)