ColossalAI/applications/Chat/examples/train_sft.py

222 lines
8.8 KiB
Python
Raw Normal View History

2023-03-28 12:25:36 +00:00
import argparse
import math
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
import warnings
2023-03-28 12:25:36 +00:00
import torch
import torch.distributed as dist
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
from coati.dataset import SFTDataset, SupervisedDataset
from coati.models.bloom import BLOOMActor
from coati.models.chatglm import ChatGLMActor
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
from coati.models.gpt import GPTActor
from coati.models.llama import LlamaActor
from coati.models.opt import OPTActor
2023-03-28 12:25:36 +00:00
from coati.trainer import SFTTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
2023-03-28 12:25:36 +00:00
from datasets import load_dataset
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer
2023-03-28 12:25:36 +00:00
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.trainer import get_scheduler
2023-03-28 12:25:36 +00:00
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import HybridAdam
def train(args):
# configure strategy
if args.strategy == "ddp":
2023-03-28 12:25:36 +00:00
strategy = DDPStrategy()
elif args.strategy == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="auto")
elif args.strategy == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
elif args.strategy == "colossalai_zero2_cpu":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu")
2023-03-28 12:25:36 +00:00
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
if args.lora_rank > 0:
warnings.warn("Lora is not supported yet.")
args.lora_rank = 0
2023-03-28 12:25:36 +00:00
with strategy.model_init_context():
if args.model == "bloom":
model = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "opt":
model = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "gpt2":
model = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "llama":
model = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "chatglm":
model = ChatGLMActor(pretrained=args.pretrain)
2023-03-28 12:25:36 +00:00
else:
raise ValueError(f'Unsupported model "{args.model}"')
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
model.to(torch.bfloat16).to(torch.cuda.current_device())
2023-03-28 12:25:36 +00:00
# configure tokenizer
if args.model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
2023-03-28 12:25:36 +00:00
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "bloom":
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
tokenizer = BloomTokenizerFast.from_pretrained(
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
)
2023-03-28 12:25:36 +00:00
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "llama":
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
tokenizer = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
)
tokenizer.eos_token = "<\s>"
[chat] fix bugs and add unit tests (#4213) * style: rename replay buffer Experience replay is typically for off policy algorithms. Use this name in PPO maybe misleading. * fix: fix wrong zero2 default arg * test: update experience tests * style: rename zero_pad fn * fix: defer init in CycledDataLoader * test: add benchmark test * style: rename internal fn of generation * style: rename internal fn of lora * fix: remove unused loss fn * fix: remove unused utils fn * refactor: remove generate_with_actor fn * fix: fix type annotation * test: add models tests * fix: skip llama due to long execution time * style: modify dataset * style: apply formatter * perf: update reward dataset * fix: fix wrong IGNORE_INDEX in sft dataset * fix: remove DataCollatorForSupervisedDataset * test: add dataset tests * style: apply formatter * style: rename test_ci to test_train * feat: add llama in inference * test: add inference tests * test: change test scripts directory * fix: update ci * fix: fix typo * fix: skip llama due to oom * fix: fix file mod * style: apply formatter * refactor: remove duplicated llama_gptq * style: apply formatter * to: update rm test * feat: add tokenizer arg * feat: add download model script * test: update train tests * fix: modify gemini load and save pretrained * test: update checkpoint io test * to: modify nproc_per_node * fix: do not remove existing dir * fix: modify save path * test: add random choice * fix: fix sft path * fix: enlarge nproc_per_node to avoid oom * fix: add num_retry * fix: make lora config of rm and critic consistent * fix: add warning about lora weights * fix: skip some gpt2 tests * fix: remove grad ckpt in rm and critic due to errors * refactor: directly use Actor in train_sft * test: add more arguments * fix: disable grad ckpt when using lora * fix: fix save_pretrained and related tests * test: enable zero2 tests * revert: remove useless fn * style: polish code * test: modify test args
2023-08-02 02:17:36 +00:00
tokenizer.pad_token = tokenizer.unk_token
elif args.model == "chatglm":
tokenizer = ChatGLMTokenizer.from_pretrained(
"THUDM/chatglm-6b" if args.tokenizer is None else args.tokenizer, trust_remote_code=True
)
2023-03-28 12:25:36 +00:00
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure optimizer
if args.strategy.startswith("colossalai"):
2023-03-28 12:25:36 +00:00
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
else:
optim = Adam(model.parameters(), lr=args.lr)
# configure dataset
if args.dataset == "yizhongw/self_instruct":
train_data = load_dataset(args.dataset, "super_natural_instructions", split="train")
eval_data = load_dataset(args.dataset, "super_natural_instructions", split="test")
2023-03-28 12:25:36 +00:00
if args.max_datasets_size is not None:
train_data = train_data.select(range(min(args.max_datasets_size, len(train_data))))
eval_data = eval_data.select(range(min(args.max_datasets_size, len(eval_data))))
train_dataset = SFTDataset(train_data, tokenizer, args.max_len)
eval_dataset = SFTDataset(eval_data, tokenizer, args.max_len)
2023-03-28 12:25:36 +00:00
else:
train_dataset = SupervisedDataset(
tokenizer=tokenizer,
data_path=args.dataset,
max_datasets_size=args.max_datasets_size,
max_length=args.max_len,
)
2023-03-28 12:25:36 +00:00
eval_dataset = None
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(
train_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
2023-03-28 12:25:36 +00:00
if eval_dataset is not None:
eval_sampler = DistributedSampler(
eval_dataset,
shuffle=False,
seed=42,
drop_last=False,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
2023-03-28 12:25:36 +00:00
else:
train_sampler = None
eval_sampler = None
train_dataloader = DataLoader(
train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
2023-03-28 12:25:36 +00:00
if eval_dataset is not None:
eval_dataloader = DataLoader(
eval_dataset,
shuffle=(eval_sampler is None),
sampler=eval_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
2023-03-28 12:25:36 +00:00
else:
eval_dataloader = None
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
"cosine", optim, num_warmup_steps=math.ceil(max_steps * 0.03), num_training_steps=max_steps
)
strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler))
model = strategy_dict["model"]
optim = strategy_dict["optimizer"]
lr_scheduler = strategy_dict["lr_scheduler"]
trainer = SFTTrainer(
model=model,
strategy=strategy,
optim=optim,
lr_scheduler=lr_scheduler,
max_epochs=args.max_epochs,
accumulation_steps=args.accumulation_steps,
)
logger = get_dist_logger()
trainer.fit(
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
logger=logger,
log_dir=args.log_dir,
use_wandb=args.use_wandb,
)
2023-03-28 12:25:36 +00:00
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
model.eval()
2023-03-28 12:25:36 +00:00
# save model checkpoint after fitting on only rank0
strategy.save_pretrained(model, path=args.save_path, tokenizer=tokenizer)
2023-03-28 12:25:36 +00:00
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(
trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False
)
2023-03-28 12:25:36 +00:00
if __name__ == "__main__":
2023-03-28 12:25:36 +00:00
parser = argparse.ArgumentParser()
parser.add_argument(
"--strategy",
choices=["ddp", "colossalai_gemini", "colossalai_zero2", "colossalai_zero2_cpu"],
default="colossalai_zero2",
)
parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama", "chatglm"], default="bloom")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--dataset", type=str, default=None)
parser.add_argument("--max_datasets_size", type=int, default=None)
parser.add_argument("--save_path", type=str, default="output")
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
parser.add_argument("--max_epochs", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--max_len", type=int, default=512)
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument("--merge_lora_weights", type=bool, default=True)
parser.add_argument("--lr", type=float, default=5e-6)
parser.add_argument("--accumulation_steps", type=int, default=8)
parser.add_argument("--log_dir", default="logs", type=str)
parser.add_argument("--use_wandb", default=False, action="store_true")
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
2023-03-28 12:25:36 +00:00
args = parser.parse_args()
train(args)