mirror of https://github.com/hpcaitech/ColossalAI
222 lines
8.8 KiB
Python
222 lines
8.8 KiB
Python
import argparse
|
|
import math
|
|
import warnings
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from coati.dataset import SFTDataset, SupervisedDataset
|
|
from coati.models.bloom import BLOOMActor
|
|
from coati.models.chatglm import ChatGLMActor
|
|
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
|
|
from coati.models.gpt import GPTActor
|
|
from coati.models.llama import LlamaActor
|
|
from coati.models.opt import OPTActor
|
|
from coati.trainer import SFTTrainer
|
|
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
|
|
from datasets import load_dataset
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer
|
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
from transformers.trainer import get_scheduler
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
|
|
def train(args):
|
|
# configure strategy
|
|
if args.strategy == "ddp":
|
|
strategy = DDPStrategy()
|
|
elif args.strategy == "colossalai_gemini":
|
|
strategy = GeminiStrategy(placement_policy="auto")
|
|
elif args.strategy == "colossalai_zero2":
|
|
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
|
|
elif args.strategy == "colossalai_zero2_cpu":
|
|
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu")
|
|
else:
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
# configure model
|
|
if args.lora_rank > 0:
|
|
warnings.warn("Lora is not supported yet.")
|
|
args.lora_rank = 0
|
|
|
|
with strategy.model_init_context():
|
|
if args.model == "bloom":
|
|
model = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
|
|
elif args.model == "opt":
|
|
model = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
|
|
elif args.model == "gpt2":
|
|
model = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
|
|
elif args.model == "llama":
|
|
model = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
|
|
elif args.model == "chatglm":
|
|
model = ChatGLMActor(pretrained=args.pretrain)
|
|
else:
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
|
|
model.to(torch.bfloat16).to(torch.cuda.current_device())
|
|
|
|
# configure tokenizer
|
|
if args.model == "gpt2":
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == "bloom":
|
|
tokenizer = BloomTokenizerFast.from_pretrained(
|
|
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
|
|
)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == "opt":
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
elif args.model == "llama":
|
|
tokenizer = LlamaTokenizer.from_pretrained(
|
|
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
|
|
)
|
|
tokenizer.eos_token = "<\s>"
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
elif args.model == "chatglm":
|
|
tokenizer = ChatGLMTokenizer.from_pretrained(
|
|
"THUDM/chatglm-6b" if args.tokenizer is None else args.tokenizer, trust_remote_code=True
|
|
)
|
|
else:
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
|
|
# configure optimizer
|
|
if args.strategy.startswith("colossalai"):
|
|
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
|
|
else:
|
|
optim = Adam(model.parameters(), lr=args.lr)
|
|
|
|
# configure dataset
|
|
if args.dataset == "yizhongw/self_instruct":
|
|
train_data = load_dataset(args.dataset, "super_natural_instructions", split="train")
|
|
eval_data = load_dataset(args.dataset, "super_natural_instructions", split="test")
|
|
|
|
if args.max_datasets_size is not None:
|
|
train_data = train_data.select(range(min(args.max_datasets_size, len(train_data))))
|
|
eval_data = eval_data.select(range(min(args.max_datasets_size, len(eval_data))))
|
|
|
|
train_dataset = SFTDataset(train_data, tokenizer, args.max_len)
|
|
eval_dataset = SFTDataset(eval_data, tokenizer, args.max_len)
|
|
|
|
else:
|
|
train_dataset = SupervisedDataset(
|
|
tokenizer=tokenizer,
|
|
data_path=args.dataset,
|
|
max_datasets_size=args.max_datasets_size,
|
|
max_length=args.max_len,
|
|
)
|
|
eval_dataset = None
|
|
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
train_sampler = DistributedSampler(
|
|
train_dataset,
|
|
shuffle=True,
|
|
seed=42,
|
|
drop_last=True,
|
|
rank=dist.get_rank(),
|
|
num_replicas=dist.get_world_size(),
|
|
)
|
|
if eval_dataset is not None:
|
|
eval_sampler = DistributedSampler(
|
|
eval_dataset,
|
|
shuffle=False,
|
|
seed=42,
|
|
drop_last=False,
|
|
rank=dist.get_rank(),
|
|
num_replicas=dist.get_world_size(),
|
|
)
|
|
else:
|
|
train_sampler = None
|
|
eval_sampler = None
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
shuffle=(train_sampler is None),
|
|
sampler=train_sampler,
|
|
batch_size=args.batch_size,
|
|
pin_memory=True,
|
|
)
|
|
if eval_dataset is not None:
|
|
eval_dataloader = DataLoader(
|
|
eval_dataset,
|
|
shuffle=(eval_sampler is None),
|
|
sampler=eval_sampler,
|
|
batch_size=args.batch_size,
|
|
pin_memory=True,
|
|
)
|
|
else:
|
|
eval_dataloader = None
|
|
|
|
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
|
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
|
lr_scheduler = get_scheduler(
|
|
"cosine", optim, num_warmup_steps=math.ceil(max_steps * 0.03), num_training_steps=max_steps
|
|
)
|
|
strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler))
|
|
model = strategy_dict["model"]
|
|
optim = strategy_dict["optimizer"]
|
|
lr_scheduler = strategy_dict["lr_scheduler"]
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
strategy=strategy,
|
|
optim=optim,
|
|
lr_scheduler=lr_scheduler,
|
|
max_epochs=args.max_epochs,
|
|
accumulation_steps=args.accumulation_steps,
|
|
)
|
|
|
|
logger = get_dist_logger()
|
|
trainer.fit(
|
|
train_dataloader=train_dataloader,
|
|
eval_dataloader=eval_dataloader,
|
|
logger=logger,
|
|
log_dir=args.log_dir,
|
|
use_wandb=args.use_wandb,
|
|
)
|
|
|
|
if args.lora_rank > 0 and args.merge_lora_weights:
|
|
from coati.models.lora import LORA_MANAGER
|
|
|
|
# NOTE: set model to eval to merge LoRA weights
|
|
LORA_MANAGER.merge_weights = True
|
|
model.eval()
|
|
# save model checkpoint after fitting on only rank0
|
|
strategy.save_pretrained(model, path=args.save_path, tokenizer=tokenizer)
|
|
# save optimizer checkpoint on all ranks
|
|
if args.need_optim_ckpt:
|
|
strategy.save_optimizer(
|
|
trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--strategy",
|
|
choices=["ddp", "colossalai_gemini", "colossalai_zero2", "colossalai_zero2_cpu"],
|
|
default="colossalai_zero2",
|
|
)
|
|
parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama", "chatglm"], default="bloom")
|
|
parser.add_argument("--tokenizer", type=str, default=None)
|
|
parser.add_argument("--pretrain", type=str, default=None)
|
|
parser.add_argument("--dataset", type=str, default=None)
|
|
parser.add_argument("--max_datasets_size", type=int, default=None)
|
|
parser.add_argument("--save_path", type=str, default="output")
|
|
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
|
|
parser.add_argument("--max_epochs", type=int, default=3)
|
|
parser.add_argument("--batch_size", type=int, default=4)
|
|
parser.add_argument("--max_len", type=int, default=512)
|
|
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
|
|
parser.add_argument("--merge_lora_weights", type=bool, default=True)
|
|
parser.add_argument("--lr", type=float, default=5e-6)
|
|
parser.add_argument("--accumulation_steps", type=int, default=8)
|
|
parser.add_argument("--log_dir", default="logs", type=str)
|
|
parser.add_argument("--use_wandb", default=False, action="store_true")
|
|
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
|
|
args = parser.parse_args()
|
|
train(args)
|