ColossalAI/colossalai/zero/legacy/shard_utils/tensor_shard_strategy.py

60 lines
2.6 KiB
Python
Raw Normal View History

from typing import List, Optional
import torch
import torch.distributed as dist
from colossalai.utils import get_current_device
from colossalai.zero.legacy.gemini.tensor_utils import colo_model_data_tensor_move_inline
from colossalai.zero.legacy.shard_utils import BaseShardStrategy
from colossalai.zero.legacy.shard_utils.commons import get_shard
from colossalai.zero.legacy.sharded_param.sharded_tensor import ShardedTensor
class TensorShardStrategy(BaseShardStrategy):
"""
A naive implementation which shard each tensor evenly over all ranks
"""
def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
for t in tensor_list:
self._shard_tensor(t, process_group)
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
for t in tensor_list:
self._gather_tensor(t, process_group)
def _shard_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
""" Shard tensor among processes.
Args:
t (ShardedTensor): a tensor to be sharded.
process_group (Optional[dist.ProcessGroup], optional): the process group among which tensor shards.
Defaults to None.
"""
if t.is_sharded:
return
if t.payload.device.type == 'cuda':
assert t.payload.device == get_current_device(), f"shard tensor on cuda device index {t.payload.device.index},"\
f" but current cuda device is {get_current_device()}"
sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group))
t.payload_reset(sharded_payload)
t.is_sharded = True
def _gather_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None):
if not t.is_sharded:
return
target_device = t.device
payload_numel = t.payload.numel()
world_size = dist.get_world_size(process_group)
rank = dist.get_rank(process_group)
buffer = torch.empty(payload_numel * world_size, dtype=t.payload.dtype, device=get_current_device())
buffer_list = list(torch.chunk(buffer, chunks=world_size, dim=0))
buffer_list[rank].copy_(t.payload)
dist.all_gather(buffer_list, buffer_list[rank], group=process_group, async_op=False)
gathered_payload = torch.narrow(buffer, 0, 0, t.origin_numel).reshape(t.origin_shape)
t.payload_reset(gathered_payload)
2022-03-29 07:45:48 +00:00
colo_model_data_tensor_move_inline(t, target_device)
t.is_sharded = False