ColossalAI/tests/test_zero_data_parallel/test_sharded_optim_v2.py

86 lines
3.4 KiB
Python
Raw Normal View History

2022-03-04 03:49:02 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
from functools import partial
import colossalai
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.utils import free_port
2022-03-14 07:06:02 +00:00
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
2022-03-04 03:49:02 +00:00
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_optim import ShardedOptimizerV2
2022-03-09 08:09:36 +00:00
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
2022-03-04 03:49:02 +00:00
from torch.optim import Adam
2022-03-09 08:09:36 +00:00
from common import CONFIG, check_sharded_params_padding
2022-03-04 03:49:02 +00:00
2022-03-09 08:09:36 +00:00
def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
2022-03-04 03:49:02 +00:00
model.train()
2022-03-04 05:40:48 +00:00
optimizer.zero_grad()
2022-03-04 03:49:02 +00:00
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
2022-03-04 03:49:02 +00:00
loss = loss.float()
2022-03-09 08:09:36 +00:00
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
else:
loss.backward()
optimizer.step()
2022-03-04 03:49:02 +00:00
2022-03-14 07:06:02 +00:00
def run_dist(rank, world_size, port, cpu_offload, shard_strategy):
2022-03-09 08:09:36 +00:00
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
2022-03-14 07:06:02 +00:00
shard_strategy = shard_strategy()
2022-03-09 08:09:36 +00:00
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
2022-03-09 08:09:36 +00:00
model = model(checkpoint=True).cuda()
zero_model = ShardedModelV2(copy.deepcopy(model),
shard_strategy,
offload_config=dict(device='cpu') if cpu_offload else None)
2022-03-04 03:49:02 +00:00
if dist.get_world_size() > 1:
2022-03-09 08:09:36 +00:00
model = DDP(model)
lr = 1e-3
optim = optimizer_class(model.parameters(), lr=lr)
sharded_optim = ShardedOptimizerV2(zero_model,
optimizer_class,
2022-03-09 08:09:36 +00:00
shard_strategy,
cpu_offload=cpu_offload,
initial_scale=2**5,
lr=lr)
2022-03-09 08:09:36 +00:00
for i, (data, label) in enumerate(train_dataloader):
if i > 2:
break
data, label = data.cuda(), label.cuda()
run_step(model, optim, data, label, criterion, False)
run_step(zero_model, sharded_optim, data, label, criterion, False)
2022-03-09 08:09:36 +00:00
check_sharded_params_padding(model, zero_model, loose=True)
2022-03-04 03:49:02 +00:00
2022-03-09 08:09:36 +00:00
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@pytest.mark.parametrize("cpu_offload", [True, False])
2022-03-14 07:06:02 +00:00
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
def test_sharded_optim_v2(world_size, cpu_offload, shard_strategy):
run_func = partial(run_dist,
world_size=world_size,
port=free_port(),
cpu_offload=cpu_offload,
shard_strategy=shard_strategy)
2022-03-04 03:49:02 +00:00
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
2022-03-14 07:06:02 +00:00
test_sharded_optim_v2(world_size=2, cpu_offload=True, shard_strategy=TensorShardStrategy)