You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/tutorial/opt/inference/opt_fastapi.py

124 lines
5.1 KiB

import argparse
import logging
import random
from typing import Optional
import uvicorn
from energonai import QueueFullError, launch_engine
from energonai.model import opt_6B, opt_30B, opt_125M, opt_175B
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel, Field
from transformers import GPT2Tokenizer
from batch import BatchManagerForGeneration
from cache import ListCache, MissCacheError
class GenerationTaskReq(BaseModel):
max_tokens: int = Field(gt=0, le=256, example=64)
prompt: str = Field(
min_length=1, example='Question: Where were the 2004 Olympics held?\nAnswer: Athens, Greece\n\nQuestion: What is the longest river on the earth?\nAnswer:')
top_k: Optional[int] = Field(default=None, gt=0, example=50)
top_p: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.5)
temperature: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.7)
app = FastAPI()
@app.post('/generation')
async def generate(data: GenerationTaskReq, request: Request):
logger.info(f'{request.client.host}:{request.client.port} - "{request.method} {request.url.path}" - {data}')
key = (data.prompt, data.max_tokens)
try:
if cache is None:
raise MissCacheError()
outputs = cache.get(key)
output = random.choice(outputs)
logger.info('Cache hit')
except MissCacheError:
inputs = tokenizer(data.prompt, truncation=True, max_length=512)
inputs['max_tokens'] = data.max_tokens
inputs['top_k'] = data.top_k
inputs['top_p'] = data.top_p
inputs['temperature'] = data.temperature
try:
uid = id(data)
engine.submit(uid, inputs)
output = await engine.wait(uid)
output = tokenizer.decode(output, skip_special_tokens=True)
if cache is not None:
cache.add(key, output)
except QueueFullError as e:
raise HTTPException(status_code=406, detail=e.args[0])
return {'text': output}
@app.on_event("shutdown")
async def shutdown(*_):
engine.shutdown()
server.should_exit = True
server.force_exit = True
await server.shutdown()
def get_model_fn(model_name: str):
model_map = {
'opt-125m': opt_125M,
'opt-6.7b': opt_6B,
'opt-30b': opt_30B,
'opt-175b': opt_175B
}
return model_map[model_name]
def print_args(args: argparse.Namespace):
print('\n==> Args:')
for k, v in args.__dict__.items():
print(f'{k} = {v}')
FIXED_CACHE_KEYS = [
('Question: What is the name of the largest continent on earth?\nAnswer: Asia\n\nQuestion: What is at the center of the solar system?\nAnswer:', 64),
('A chat between a salesman and a student.\n\nSalesman: Hi boy, are you looking for a new phone?\nStudent: Yes, my phone is not functioning well.\nSalesman: What is your budget? \nStudent: I have received my scholarship so I am fine with any phone.\nSalesman: Great, then perhaps this latest flagship phone is just right for you.', 64),
("English: I am happy today.\nChinese: 我今天很开心。\n\nEnglish: I am going to play basketball.\nChinese: 我一会去打篮球。\n\nEnglish: Let's celebrate our anniversary.\nChinese:", 64)
]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('model', choices=['opt-125m', 'opt-6.7b', 'opt-30b', 'opt-175b'])
parser.add_argument('--tp', type=int, default=1)
parser.add_argument('--master_host', default='localhost')
parser.add_argument('--master_port', type=int, default=19990)
parser.add_argument('--rpc_port', type=int, default=19980)
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--pipe_size', type=int, default=1)
parser.add_argument('--queue_size', type=int, default=0)
parser.add_argument('--http_host', default='0.0.0.0')
parser.add_argument('--http_port', type=int, default=7070)
parser.add_argument('--checkpoint', default=None)
parser.add_argument('--cache_size', type=int, default=0)
parser.add_argument('--cache_list_size', type=int, default=1)
args = parser.parse_args()
print_args(args)
model_kwargs = {}
if args.checkpoint is not None:
model_kwargs['checkpoint'] = args.checkpoint
logger = logging.getLogger(__name__)
tokenizer = GPT2Tokenizer.from_pretrained('facebook/opt-30b')
if args.cache_size > 0:
cache = ListCache(args.cache_size, args.cache_list_size, fixed_keys=FIXED_CACHE_KEYS)
else:
cache = None
engine = launch_engine(args.tp, 1, args.master_host, args.master_port, args.rpc_port, get_model_fn(args.model),
batch_manager=BatchManagerForGeneration(max_batch_size=args.max_batch_size,
pad_token_id=tokenizer.pad_token_id),
pipe_size=args.pipe_size,
queue_size=args.queue_size,
**model_kwargs)
config = uvicorn.Config(app, host=args.http_host, port=args.http_port)
server = uvicorn.Server(config=config)
server.run()