import argparse import logging import random from typing import Optional import uvicorn from energonai import QueueFullError, launch_engine from energonai.model import opt_6B, opt_30B, opt_125M, opt_175B from fastapi import FastAPI, HTTPException, Request from pydantic import BaseModel, Field from transformers import GPT2Tokenizer from batch import BatchManagerForGeneration from cache import ListCache, MissCacheError class GenerationTaskReq(BaseModel): max_tokens: int = Field(gt=0, le=256, example=64) prompt: str = Field( min_length=1, example='Question: Where were the 2004 Olympics held?\nAnswer: Athens, Greece\n\nQuestion: What is the longest river on the earth?\nAnswer:') top_k: Optional[int] = Field(default=None, gt=0, example=50) top_p: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.5) temperature: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.7) app = FastAPI() @app.post('/generation') async def generate(data: GenerationTaskReq, request: Request): logger.info(f'{request.client.host}:{request.client.port} - "{request.method} {request.url.path}" - {data}') key = (data.prompt, data.max_tokens) try: if cache is None: raise MissCacheError() outputs = cache.get(key) output = random.choice(outputs) logger.info('Cache hit') except MissCacheError: inputs = tokenizer(data.prompt, truncation=True, max_length=512) inputs['max_tokens'] = data.max_tokens inputs['top_k'] = data.top_k inputs['top_p'] = data.top_p inputs['temperature'] = data.temperature try: uid = id(data) engine.submit(uid, inputs) output = await engine.wait(uid) output = tokenizer.decode(output, skip_special_tokens=True) if cache is not None: cache.add(key, output) except QueueFullError as e: raise HTTPException(status_code=406, detail=e.args[0]) return {'text': output} @app.on_event("shutdown") async def shutdown(*_): engine.shutdown() server.should_exit = True server.force_exit = True await server.shutdown() def get_model_fn(model_name: str): model_map = { 'opt-125m': opt_125M, 'opt-6.7b': opt_6B, 'opt-30b': opt_30B, 'opt-175b': opt_175B } return model_map[model_name] def print_args(args: argparse.Namespace): print('\n==> Args:') for k, v in args.__dict__.items(): print(f'{k} = {v}') FIXED_CACHE_KEYS = [ ('Question: What is the name of the largest continent on earth?\nAnswer: Asia\n\nQuestion: What is at the center of the solar system?\nAnswer:', 64), ('A chat between a salesman and a student.\n\nSalesman: Hi boy, are you looking for a new phone?\nStudent: Yes, my phone is not functioning well.\nSalesman: What is your budget? \nStudent: I have received my scholarship so I am fine with any phone.\nSalesman: Great, then perhaps this latest flagship phone is just right for you.', 64), ("English: I am happy today.\nChinese: 我今天很开心。\n\nEnglish: I am going to play basketball.\nChinese: 我一会去打篮球。\n\nEnglish: Let's celebrate our anniversary.\nChinese:", 64) ] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('model', choices=['opt-125m', 'opt-6.7b', 'opt-30b', 'opt-175b']) parser.add_argument('--tp', type=int, default=1) parser.add_argument('--master_host', default='localhost') parser.add_argument('--master_port', type=int, default=19990) parser.add_argument('--rpc_port', type=int, default=19980) parser.add_argument('--max_batch_size', type=int, default=8) parser.add_argument('--pipe_size', type=int, default=1) parser.add_argument('--queue_size', type=int, default=0) parser.add_argument('--http_host', default='0.0.0.0') parser.add_argument('--http_port', type=int, default=7070) parser.add_argument('--checkpoint', default=None) parser.add_argument('--cache_size', type=int, default=0) parser.add_argument('--cache_list_size', type=int, default=1) args = parser.parse_args() print_args(args) model_kwargs = {} if args.checkpoint is not None: model_kwargs['checkpoint'] = args.checkpoint logger = logging.getLogger(__name__) tokenizer = GPT2Tokenizer.from_pretrained('facebook/opt-30b') if args.cache_size > 0: cache = ListCache(args.cache_size, args.cache_list_size, fixed_keys=FIXED_CACHE_KEYS) else: cache = None engine = launch_engine(args.tp, 1, args.master_host, args.master_port, args.rpc_port, get_model_fn(args.model), batch_manager=BatchManagerForGeneration(max_batch_size=args.max_batch_size, pad_token_id=tokenizer.pad_token_id), pipe_size=args.pipe_size, queue_size=args.queue_size, **model_kwargs) config = uvicorn.Config(app, host=args.http_host, port=args.http_port) server = uvicorn.Server(config=config) server.run()