ColossalAI/applications/Chat/coati/models/roberta/roberta_critic.py

39 lines
1.3 KiB
Python
Raw Normal View History

from typing import Optional
import torch.nn as nn
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.models.roberta.modeling_roberta import RobertaModel
from ..base import Critic
class RoBERTaCritic(Critic):
"""
RoBERTa Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (RoBERTa Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[RobertaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none',
**kwargs) -> None:
if pretrained is not None:
model = RobertaModel.from_pretrained(pretrained, add_pooling_layer=False)
elif config is not None:
model = RobertaModel(config)
else:
model = RobertaModel(RobertaConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)