mirror of https://github.com/hpcaitech/ColossalAI
39 lines
1.3 KiB
Python
39 lines
1.3 KiB
Python
from typing import Optional
|
|
|
|
import torch.nn as nn
|
|
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
|
from transformers.models.roberta.modeling_roberta import RobertaModel
|
|
|
|
from ..base import Critic
|
|
|
|
|
|
class RoBERTaCritic(Critic):
|
|
"""
|
|
RoBERTa Critic model.
|
|
|
|
Args:
|
|
pretrained (str): Pretrained model name or path.
|
|
config (RoBERTa Config): Model config.
|
|
checkpoint (bool): Enable gradient checkpointing.
|
|
lora_rank (int): Rank of the low-rank approximation.
|
|
lora_train_bias (str): LoRA bias training mode.
|
|
"""
|
|
|
|
def __init__(self,
|
|
pretrained: Optional[str] = None,
|
|
config: Optional[RobertaConfig] = None,
|
|
checkpoint: bool = False,
|
|
lora_rank: int = 0,
|
|
lora_train_bias: str = 'none',
|
|
**kwargs) -> None:
|
|
if pretrained is not None:
|
|
model = RobertaModel.from_pretrained(pretrained, add_pooling_layer=False)
|
|
elif config is not None:
|
|
model = RobertaModel(config)
|
|
else:
|
|
model = RobertaModel(RobertaConfig())
|
|
if checkpoint:
|
|
model.gradient_checkpointing_enable()
|
|
value_head = nn.Linear(model.config.hidden_size, 1)
|
|
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)
|